相关习题
 0  47646  47654  47660  47664  47670  47672  47676  47682  47684  47690  47696  47700  47702  47706  47712  47714  47720  47724  47726  47730  47732  47736  47738  47740  47741  47742  47744  47745  47746  47748  47750  47754  47756  47760  47762  47766  47772  47774  47780  47784  47786  47790  47796  47802  47804  47810  47814  47816  47822  47826  47832  47840  266669 

科目: 来源: 题型:

(1)不等式2|x|+|x-1|<2的解集是
(-
1
3
,1)
(-
1
3
,1)

(2)在极坐标系中,过点(2
2
π
4
)
作圆ρ=4sinθ的切线,则切线的极坐标方程为
ρcosθ=2
ρcosθ=2

查看答案和解析>>

科目: 来源: 题型:

若直线l被圆x2+y2=4所截得的弦长为2
3
,则直线l与下列曲线一定有公共点的是(  )

查看答案和解析>>

科目: 来源: 题型:

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E,F,求证:EF∥BC.
B.选修4-2:矩阵与变换
已知a,b∈R,若矩阵M=[
-1
b
a
3
]所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.
C.选修4-4:坐标系与参数方程将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t为参数)化为普通方程.
D.选修4-5:已知a,b是正数,求证(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

科目: 来源: 题型:

8.如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设
DM
DN
=λ,试确定实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知a为实数,函数f(x)=(x2+1)(x+a)
(I)若f′(-1)=0,求函数y=f(x)在[-
3
2
,1]上的最大值和最小值;
(II)若对于m取任何值,直线y=
1
2
x+m都不是函数f(x)图象的切线,求a值的范围.

查看答案和解析>>

科目: 来源: 题型:

设函数f(x)=2sin(ωx+
π
6
)+k(0<ω<π),将f(x)的图象按
a
=(
1
3
,-1)平移后得一奇函数,
(Ⅰ)求当x∈[0,2]时函数y=f(x)的值域
(Ⅱ)设数列{an}的通项公式为an=f(n)(n∈N+),Sn为其前N项的和,求S2010的值.

查看答案和解析>>

科目: 来源: 题型:

递增等比数列{an}中a1=2,前n项和为Sn,S2是a2,a3的等差中项:
(Ⅰ)求Sn及an
(Ⅱ)数列{bn}满足bn=logan2logan+12+
2
25
log2an,{bn}的前n项和为Tn,求
Tn
n
的最小值.

查看答案和解析>>

科目: 来源: 题型:

a
=(2cosωx,
3
sinωx),
b
=(cosωx,2cosωx)(w>0),函数f(x)=
a
b
的最小正周期为π:
(Ⅰ) 求f(x)的单调增区间
(Ⅱ) 在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=2,b=1,△ABC的面积为
3
2
,求
b+c
sinB+sinC
的值.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=lg[1-a(
1
2
x+(
1
4
x]
(Ⅰ)当a=1时,求函数f(x)的值域
(Ⅱ)若f(x)在x∈(-2,1]上恒有意义,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知函数f(x)=
x3(x>0)
(3-a)x-a(x≤0)
,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若
f(x1)-f(x2)
x1-x2
>0恒成立,则a∈[0,3);  
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有
f(x1)+f(x)2
2
<f(
x1+x2
2
);  
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有
(2)(4)
(2)(4)
(只填相应的序号)

查看答案和解析>>

同步练习册答案