相关习题
 0  47858  47866  47872  47876  47882  47884  47888  47894  47896  47902  47908  47912  47914  47918  47924  47926  47932  47936  47938  47942  47944  47948  47950  47952  47953  47954  47956  47957  47958  47960  47962  47966  47968  47972  47974  47978  47984  47986  47992  47996  47998  48002  48008  48014  48016  48022  48026  48028  48034  48038  48044  48052  266669 

科目: 来源: 题型:

已知动点P到直线x=2的距离等于P到圆x2-7x+y2+4=0的切线长,设点P的轨迹为曲线E;
(1)求曲线E的方程;
(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点  (
1
|MQ|
1
|NQ|
)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

设f(x)=lnx.
(1)设F(x)=f(x+2)-
2xx+1
,求F(x)的单调区间;
(2)若不等式f(x+1)≤f(2x+1)-m2+3am+4对任意a∈[-1,1],x∈[0,1]恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

某中学有A、B、C、D、E五名同学在高三“一检”中的名次依次为1,2,3,4,5名,“二检”中的前5名依然是这五名同学.
(1)求恰好有两名同学排名不变的概率;
(2)如果设同学排名不变的同学人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布与曲线y=Asin(
π12
x+?)+b
拟合(0≤x<24,单位为小时,y表示气温,单位为摄氏度,|?|<π,A>0),现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高.
(1)求这条曲线的函数表达式;
(2)这天气温不低于10摄氏度的时间有多长?

查看答案和解析>>

科目: 来源: 题型:

选做题(本题共2小题,任选一题作答,若做两题,则按所做的第①题给分)
(1)已知不等式|x+1|-a<|x-2|的解集为(-∞,2),则a的值为
3
3

(2)曲线C1:ρ=2sinθ与曲线C2:ρ=2cosθ(ρ≥0,0≤θ<2π)的交点的极坐标为
(0,0),(
2
π
4
(0,0),(
2
π
4

查看答案和解析>>

科目: 来源: 题型:

在(x+2y-z)8的展开式中,所有x的指数为2且y的指数不为1的项的系数之和为
364
364

查看答案和解析>>

科目: 来源: 题型:

已知关于x的不等式
1
a
x2+bx+c<0
(ab>1)的解集为空集,则T=
1
2(ab-1)
+
a(b+2c)
ab-1
的最小值为(  )

查看答案和解析>>

科目: 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若A1A=3,求点B到平面B1CA的距离.

查看答案和解析>>

科目: 来源: 题型:

某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 4月1日 4月7日 4月15日 4月21日 4月30日
温差x/°C 10 11 13 12 8
发芽数y/颗 23 25 30 26 16
(1)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25的概率.
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程
?
y
=
?
b
x+
?
a

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目: 来源: 题型:

一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,则此频率分布直方图的“中位数”的估计值为
2400
2400

查看答案和解析>>

同步练习册答案