相关习题
 0  49937  49945  49951  49955  49961  49963  49967  49973  49975  49981  49987  49991  49993  49997  50003  50005  50011  50015  50017  50021  50023  50027  50029  50031  50032  50033  50035  50036  50037  50039  50041  50045  50047  50051  50053  50057  50063  50065  50071  50075  50077  50081  50087  50093  50095  50101  50105  50107  50113  50117  50123  50131  266669 

科目: 来源: 题型:

已知函数f(x)=
1-2x1+2x
,x∈R

(1)判断并证明函数f(x)的奇偶性;
(2)求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:

设f(x)为定义在R上的增函数,令g(x)=f(x)-f(2014-x).
(1)求证:g(x)+g(2014-x)是定值.
(2)判断g(x)在R上的单调性,并证明.
(3)若g(x1)+g(x2)>0,求证:x1+x2>2014.

查看答案和解析>>

科目: 来源: 题型:

设f(x)为定义在R上的增函数,令g(x)=f(x)-f(2008-x)
(1)求证:g(x)+g(2008-x)是定值.
(2)判断g(x)在R上的单调性;并证明.
(3)若g(x1)+g(x2)>0,求证:x1+x2>2008.

查看答案和解析>>

科目: 来源: 题型:

已知某企业原有员工2000人,每人每年可为企业创利润3.5万元.为应对国际金融危机给企业带来的不利影响,该企业实施“优化重组,分流增效”的策略,分流出一部分员工待岗.为维护生产稳定,该企业决定待岗人数不超过原有员工的5%,并且每年给每位待岗员工发放生活补贴0.5万元,据评估,若待岗员工人数为x,则留岗员工每人每年可为企业多创利润(1-
81100x
)万元.为使企业年利润最大,应安排多少员工待岗?

查看答案和解析>>

科目: 来源: 题型:

在一条直线型的工艺流水线上有3个工作台,将工艺流水线用如图2-19所示的数轴表示,各工作台的坐标分别为x1,x2,x3,每个工作台上有若干名工人.现要在x1与x3之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(1)若每个工作台上只有一名工人,试确定供应站的位置;
(2)设从左到右工作台上的工人人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.精英家教网

查看答案和解析>>

科目: 来源: 题型:

已知定义域为R的奇函数f(x),当x>0时,f(x)=ln x-ax+1(a∈R).
(1)求函数f(x)的解析式;
(2)若函数y=f(x)在R上恰有5个零点,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知奇函数f(x)在区间[a、b](0<a<b)上是减函数,那么在[-b,-a]上,f(x)是增函数还
是减函数,证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=|
x
x2+1
-a|
+2a+
2
3
,x∈[0,24],其中a是与气象有关的参数,且a∈[0,
1
2
].
(1)令t=
x
x2+1
,x∈[0,24],直接写出t的取值范围;(可以不要写演算写过程)
(2)若用每天f(x)的最大值作为当天的综合放射性污染指数,并记作M(a),求M(a);
(3)省政府规定,每天的综合放射性污染指数不超过2称为“环保达标”,试问a应控制在什么范围内才能“环保达标”?

查看答案和解析>>

科目: 来源: 题型:

由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱.1个单位的固体碱在水中逐步溶化,水中的碱浓度y(个浓度单位)与时间x(个时间单位)的关系为y=
-
24
x+3
-x+8,   0≤x≤
3
2
23
12
-
1
2
x   ,      
3
2
<x≤
23
6
.只有当河流中碱的浓度不低于1(个浓度单位)时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是两次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为
π
4
,设∠AOE=α,探照灯O照射在长方形ABCD内部区域的面积为S.
(1)当0≤α<
π
2
时,写出S关于α的函数表达式;
(2)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来回”,忽略OE在OA及OC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG=
π
6
,求点G在“一个来回”中,被照到的时间.

查看答案和解析>>

同步练习册答案