科目: 来源: 题型:
(08年银川一中二模文) 设椭圆
的离心率为e=![]()
(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.
(2)求b为何值时,过圆x2+y2=t2上一点M(2,
)处的切线交椭圆于Q1、Q2两点,而且OQ1⊥OQ2.
查看答案和解析>>
科目: 来源: 题型:
(06年北京卷文)(14分)
设等差数列{an}的首项a1及公差d都为整数,前n项和为Sn.
(Ⅰ)若a11=0,S14=98,求数列{an}的通项公式;
(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.查看答案和解析>>
科目: 来源: 题型:
(06年北京卷文)(14分)
椭圆C:
的两个焦点为F1,F2,点P在椭圆C上,且![]()
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心,交椭圆C于
两点,且A、B关于点M对称,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
(06年北京卷文)(13分)
某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:
(Ⅰ)该应聘者用方案一考试通过的概率;
(Ⅱ)该应聘者用方案二考试通过的概率.
查看答案和解析>>
科目: 来源: 题型:
(06年北京卷文)(14分)
如图,ABCD―A1B1C1D1是正四棱柱.
(Ⅰ)求证:BD⊥平面ACC1A1;
(Ⅱ)]若二面角C1―BD―C的大小为60o,求异面直线BC1与AC所成角的大小.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com