科目: 来源: 题型:
(08年惠州一中三模理) 如图,四棱锥P―ABCD的底面是AB=2,BC=
的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD
(I)证明:侧面PAB⊥侧面PBC;
(II)求侧棱PC与底面ABCD所成的角;
(III)求直线AB与平面PCD的距离.
查看答案和解析>>
科目: 来源: 题型:
(04年浙江卷理)设曲线y=e-x(x≥0)在点M(t,e-t}处的切线l与x轴、y轴围成的三角形面积为S(t).
(1)求切线l的方程;
(2)求S(t)的最大值。
查看答案和解析>>
科目: 来源: 题型:
(08年惠州一中三模理) 有A,B,C,D四个城市,它们都有一个著名的旅游点依此记为a,b,c,d把A,B,C,D和a,b,c,d分别写成左、右两列,现在一名旅游爱好者随机用4条线把左右全部连接起来,构成“一一对应”,已知连对的得2分,连错的得0分;
(1)求该爱好者得分的分布列;
(2)求所得分的数学期望?
查看答案和解析>>
科目: 来源: 题型:
(04年浙江卷理)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点。
(1)求证AM//平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上确定一点P,使得PF与BC所成的角是60°。
![]()
查看答案和解析>>
科目: 来源: 题型:
(08年惠州一中三模理) 若函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲线过原点,且在x=±1处的切线的斜率为-1,有以下命题:
(1)f(x)的解析式为:f(x)=x3-4x,x∈[-2,2]
(2)f(x)的极值点有且仅有一个
(3)f(x)的最大值与最小值之和等于零
其中假命题个数为( )
A.0个 B.1个 C.2个 D.3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com