相关习题
 0  52188  52196  52202  52206  52212  52214  52218  52224  52226  52232  52238  52242  52244  52248  52254  52256  52262  52266  52268  52272  52274  52278  52280  52282  52283  52284  52286  52287  52288  52290  52292  52296  52298  52302  52304  52308  52314  52316  52322  52326  52328  52332  52338  52344  52346  52352  52356  52358  52364  52368  52374  52382  266669 

科目: 来源: 题型:

某物体一天中的温度T是时间t的函数:T(t)=t3-3t+60(时间:小时,温度:℃),t=0表示时间12:00,其后t取值为正,则上午8时的温度是(    )

A.8 ℃              B.112 ℃             C.58 ℃               D.18℃

查看答案和解析>>

科目: 来源: 题型:

据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是(    )

A.y=0.1x+800(0≤x≤4 000)                 B.y=0.1x+1 200(0≤x≤4 000)

C.y=-0.1x+800(0≤x≤4 000)               D.y=-0.1x+1 200(0≤x≤4 000)

查看答案和解析>>

科目: 来源: 题型:

我国农业科学家在某地区研究玉米植株生长与时间的函数关系,通过观测、分析,列出了该地区玉米在不同阶段的高度数据:

生长阶段

1

2

3

4

5

6

7

8

9

10

11

植株高度(cm)

0.67

0.85

1.28

1.75

2.27

2.75

3.69

4.71

6.36

7.73

9.91

生长阶段

12

13

14

15

16

17

18

19

20

21

22

植株高度(cm)

12.75

16.55

20.1

27.35

32.55

37.55

44.75

53.38

71.61

83.89

97.46

生长阶段

23

24

25

26

27

28

29

30

31

 

 

植株高度(cm)

112.73

135.12

153.6

160.32

167.05

174.9

177.87

180.19

180.79

 

 

(1)画出函数图形,近似地写出一个函数关系式表达两个变量之间的关系;

(2)利用得出的关系式,与表中实际数据比较;

(3)说出关系式给出的一些信息.

查看答案和解析>>

科目: 来源: 题型:

某蔬菜基地种植西红杮,由历年市场行情得知,从二月一日起的300天内,西红杮市场售价与上市时间的关系用图①的一条折线表示;西红杮的种植成本与上市时间的关系用图②的抛物线段表示.

(1)写出图①表示的市场售价与时间的函数关系式P=f(t);写出图②表示的种植成本与时间的函数关系式Q=g(t);

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红杮收益最大?

(注:市场售价和种植成本的单位:元/102 kg,时间单位:天)

查看答案和解析>>

科目: 来源: 题型:

“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过1 000元的,免征个人工资、薪金所得税;超过1 000元部分需征税.设全月纳税所得额(所得额指工资、薪金中应纳税的部分)为x,x=全月总收入-1 000元,税率见下表:

级  数

全月应纳税所得额x

税  率

1

不超过500元部分

5%

2

超过500元至2 000元部分

10%

3

超过2 000元至5 000元部分

15%

9

超过100 000元部分

45%

(1)若应纳税额为f(x),试用分段函数表示1—3级纳税额f(x)的计算公式;

(2)某人2000年10月份工资总收入为4 200元,试计算这个人10月份应纳个人所得税多少元?

查看答案和解析>>

科目: 来源: 题型:

某工厂计划出售一种产品,固定成本为200万元,生产每台产品的可变成本为3 000元,每台产品的售价为5 000元,求总产量x对总成本Q、单位成本P、销售收入R以及利润L的函数关系,并作出简要分析.

查看答案和解析>>

科目: 来源: 题型:

家用冰箱使用的氟化物的释放破坏了大气上层的臭氧层.臭氧含量Q呈指数函数型变化,满足关系式Q=Q0-0.002 5 t,其中Q0是臭氧的初始量.

(1)随时间的增加,臭氧的含量是增加还是减少?

(2)多少年以后将会有一半的臭氧消失?

查看答案和解析>>

科目: 来源: 题型:

汽车在行驶中,由于惯性作用,刹车制动后,还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析交通事故的一个重要因素.在一个限速为100 km/h的高速公路上,甲车的刹车距离y(m)与刹车的速度x(km/h)的关系可用模型y=ax2来描述,在限速为100 km/h的高速公路上,甲车在速度为50 km/h时,刹车距离为10 m,则甲型号的车刹车距离为多少米,交通部门可以判定此车超速?

查看答案和解析>>

科目: 来源: 题型:

已知一个RC电路,电容器充电后经过电阻R放电,如下图,C=50 μF,R=100 kΩ,则电容器C充电后的初始电压Uc=6 V.试求:

(1)开始放电时的初始电流;

(2)电流的时间常数;

(3)电容器上电压衰减到3 V时所需要的时间.

查看答案和解析>>

科目: 来源: 题型:

如下图所示,开始时桶1中有a升水,t分钟后剩余水符合指数衰减曲线y1=ae-nt,那么桶2中水就是y2=a-ae-nt.假设过5分钟时桶1和桶2的水相等,再过______________分钟,桶1中的水只有.

查看答案和解析>>

同步练习册答案