相关习题
 0  58047  58055  58061  58065  58071  58073  58077  58083  58085  58091  58097  58101  58103  58107  58113  58115  58121  58125  58127  58131  58133  58137  58139  58141  58142  58143  58145  58146  58147  58149  58151  58155  58157  58161  58163  58167  58173  58175  58181  58185  58187  58191  58197  58203  58205  58211  58215  58217  58223  58227  58233  58241  266669 

科目: 来源: 题型:

1.已知集合A={-1,3,m},集合B={3,4},若BA.则实数m=_____________.

查看答案和解析>>

科目: 来源: 题型:

21.已知椭圆C1=1,抛物线C2∶(y-m)2=2px(p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.

(Ⅰ)当AB⊥x轴时,求p、m的值,并判断抛物线C2的焦点是否在直线AB上;

(Ⅱ)若P=且抛物线C2的焦点在直线AB上,求m的值及AB的方程.

 

查看答案和解析>>

科目: 来源: 题型:

22.已知函数有如下性质:如果常数>0,那么该函数在0,上是减函数,

,+∞上是增函数.

(1)如果函数>0)的值域为6,+∞,求的值;

(2)研究函数(常数>0)在定义域内的单调性,并说明理由;

(3)对函数(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数

是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目: 来源: 题型:

21.已知有穷数列共有2项(整数≥2),首项=2.设该数列的前项和为,且+2(=1,2,┅,2-1),其中常数>1.

(1)求证:数列是等比数列;

(2)若Equation.3,数列满足=1,2,┅,2),求数列的通项公式;

(3)若(2)中的数列满足不等式||+||+┅+||+||≤4,求的值.

查看答案和解析>>

科目: 来源: 题型:

20.在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.

(1)求证:“如果直线过点T(3,0),那么3”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

19.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60

(1)求四棱锥P-ABCD的体积;

(2)若E是PB的中点,求异面直线DE与PA所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目: 来源: 题型:

18.如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?

查看答案和解析>>

科目: 来源: 题型:

17.求函数=2的值域和最小正周期.

查看答案和解析>>

科目: 来源: 题型:

16.如图,平面中两条直线相交于点O,对于平面上任意一点M,若分别是M到直线的距离,则称有序非负实数对()是点M的“距离坐标”.已知常数≥0,≥0,给出下列三个命题:

①若=0,则“距离坐标”为(0,0)的点有且仅有1个;

②若=0,且≠0,则“距离坐标”为()的点有且仅有2个;

③若≠0,则“距离坐标”为()的点有且仅有4个.

上述命题中,正确命题的个数是                            [答](      )

(A)0;(B)1; (C)2; (D)3.

查看答案和解析>>

科目: 来源: 题型:

15.若关于的不等式+4的解集是M,则对任意实常数,总有[答](      )

(A)2∈M,0∈M;      (B)2M0M

(C)2∈M,0M;      (D)2M,0∈M.

查看答案和解析>>

同步练习册答案