科目: 来源: 题型:
已知方向向量为
的直线
过椭圆C:=1(a>b>0)的焦点以及点(0,
),椭圆C的中心关于直线
的对称点在椭圆C的右准线上。
⑴求椭圆C的方程。
⑵过点E(-2,0)的直线
交椭圆C于点M、N,且满足
,(O为坐标原点),求直线
的方程。
查看答案和解析>>
科目: 来源: 题型:
()已知,椭圆C过点A
,两个焦点为(-1,0),(1,0)。
(1) 求椭圆C的方程;![]()
![]()
(2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)如图,在四棱锥V—ABCD中,底面ABCD是矩形,侧棱VA⊥底面ABCD,E、F、G分别为VA、VB、BC的中点。(I)求证:平面EFG//平面VCD; (II)当二面角V—BC—A、V—DC—A分别为45°、30°时,求直线VB与平面EFG所成的角。
查看答案和解析>>
科目: 来源: 题型:
为了考察两个变量x与y之间的线性关系,甲、乙两同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1、l2,已知两人得到的试验数据中变量x和y的数据的平均值相等,且分别都是s、t,那么下列说法正确的是( )
A.直线l1,l2一定有公共点(s,t) B.直线l1,l2相交,但交点不一定是(s,t)
C.必有l1∥l2 D.l1,l2必定重合
查看答案和解析>>
科目: 来源: 题型:
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点P和Q,
求k的取值范围;
(Ⅲ)已知点M(,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量
与
共线?如果存在,求出k的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com