科目: 来源: 题型:
如图所示,在矩形ABCD中,AB=2BC=2a,E为AB上一点,将B点沿线段EC折起至点P,连接PA、PC、PD,取PD的中点F,若有AF∥平面PEC.
(1)试确定E点位置;
(2)若异面直线PE、CD所成的角为60°,并且PA的长度大于a,
求证:平面PEC⊥平面AECD.
查看答案和解析>>
科目: 来源: 题型:
如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,
∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
求证:
(1)DE∥平面ABC;
(2)B1F⊥平面AEF.
![]()
查看答案和解析>>
科目: 来源: 题型:
2009年7月2日—4日光明中学进行了08—09学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是( )
A.1 000名学生是总体
B.每个学生是个体
C.1 000名学生的成绩是一个个体
D.样本的容量是100
查看答案和解析>>
科目: 来源: 题型:
已知函数
、
。
(1)讨论函数
的奇偶性(只写结论,不要求证明);
(2)在构成函数
的映射
中,当输入值为
和2时分别对应的输出值为
和
,求
、
的值;
(3)在(2)的条件下,求函数
(
)的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com