相关习题
 0  60214  60222  60228  60232  60238  60240  60244  60250  60252  60258  60264  60268  60270  60274  60280  60282  60288  60292  60294  60298  60300  60304  60306  60308  60309  60310  60312  60313  60314  60316  60318  60322  60324  60328  60330  60334  60340  60342  60348  60352  60354  60358  60364  60370  60372  60378  60382  60384  60390  60394  60400  60408  266669 

科目: 来源: 题型:

已知函数的导数为实数,.

(Ⅰ)若在区间上的最小值、最大值分别为、1,求的值;

(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;

(Ⅲ)设函数,试判断函数的极值点个数.

查看答案和解析>>

科目: 来源: 题型:

在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.

(Ⅰ)确定点G的位置;

(Ⅱ)求直线AC1与平面EFG所成角θ的大小.

查看答案和解析>>

科目: 来源: 题型:

如图,已知长方体

直线与平面所成的角为垂直

的中点.

(1)求异面直线所成的角;

(2)求平面与平面所成的二面角;

(3)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

已知m∈R,直线l和圆C:

(1)求直线l斜率的取值范围;

(2)直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?

查看答案和解析>>

科目: 来源: 题型:

已知函数为常数)是实数集R上的奇函数,函数是区间[-1,1]上的减函数.

   (1)求a的值; (2)若上恒成立,求的取值范围;

   (3)讨论关于的根的个数.

查看答案和解析>>

科目: 来源: 题型:

某城市2001年底人口为500万,人均住房面积为6 m2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m2,才能使2020年底该城市人均住房面积至少为24m2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).

查看答案和解析>>

科目: 来源: 题型:

(本小题满分12分)如图,已知正方体ABCD—A1B1C1D1的棱长为2,E、F分别是A1B1、CC1的中点,过D1、E、F作平面D1EGF交BB1于G。  (1)求证:EG//D1F;   (2)求锐二面角C1—D1E—F的余弦值。

查看答案和解析>>

科目: 来源: 题型:

若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为     

(A)               (B)            (C)          (D)  w.w.w.k.s.5.u.c.o.m   

查看答案和解析>>

科目: 来源: 题型:

中,为锐角,角所对的边分别为,且.

(Ⅰ)求的值;

(Ⅱ)若,求的值.

查看答案和解析>>

科目: 来源: 题型:

(本题满分12分)已知椭圆E:(其中),直  线L与椭圆只有一个公共点T;两条平行于y轴的直线分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.

(Ⅰ)若直线L在轴上的截距为,求证: 直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若的最大值为1200,求椭圆E的方程.

查看答案和解析>>

同步练习册答案