科目: 来源: 题型:
(本小题满分15分)如图,四面体C—ABD,CB = CD,AB = AD,
∠BAD = 90°.E、F分别是BC、AC的中点.(Ⅰ)求证:AC⊥BD;(Ⅱ)如何在AC上找一点M,使BF∥平面MED?并说明理由;(Ⅲ)若CA = CB,求证:点C在底面ABD上的射影是线段BD的中点.
查看答案和解析>>
科目: 来源: 题型:
以双曲线x2-y2=2的右焦点为圆心,且与其右准线相切的圆的方程是
A.x2+y2-4x-3=0 B.x2+y2-4x+3=0
C.x2+y2+4x-5=0 D.x2+y2+4x+5=0
查看答案和解析>>
科目: 来源: 题型:
(湖南卷文)(本小题满分13分)
已知椭圆C的中心在原点,焦点在
轴上,以两个焦点和短轴的两个端点
为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C的左准线与
轴的交点,过点P的直线
与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线
的斜率的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com