科目: 来源: 题型:
运货卡车以每小时
千米的速度匀速行驶130千米,按交通法规限制![]()
(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油
升,司机的工资是每小时14元.
(Ⅰ)求这次行车总费用
关于
的表达式;
(Ⅱ)当
为何值时,这次行车的总费用最低,并求出最低费用的值.(精确小数点后两位)
查看答案和解析>>
科目: 来源: 题型:
在平面直角坐标系中,已知三个点列
,其中
,满足向量
与向量
平行,并且点列
在斜率为6的同一直线上,
。
证明:数列
是等差数列;
试用
与
表示
;
设
,是否存在这样的实数
,使得在
与
两项中至少有一项是数列
的最小项?若存在,请求出实数
的取值范围;若不存在,请说明理由;
若
,对于区间[0,1]上的任意l,总存在不小于2的自然数k,当n??k时,
恒成立,求k的最小值.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求![]()
的取值范围;
(2)设过定点
的直线
与椭圆交于不同的两点M、N,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(3)设
是它的两个顶点,直线
与AB相交于点D,与椭圆相交于E、F两点.求四边形
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com