科目: 来源: 题型:
如图3,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB,PC的中点。
(1)求证:EF//平面PAD;
(2)求证:EF⊥CD;
(3)若∠PDA=450,求EF与平面ABCD所成的角的大小
![]()
查看答案和解析>>
科目: 来源: 题型:
某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;② 该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用
表示床价,用
表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把
表示成
的函数,并求出其定义域;
(2)试确定该宾馆将床位定价为多少时既符合上面的两个条件,又能使净收入最多?
查看答案和解析>>
科目: 来源: 题型:
(12分)设数列{an},{bn}都是等差数列,它们的前n项的和分别为Sn , Tn ,若对一切n ∈ N*,都有Sn+3 = Tn .(1)若a1 ≠ b1,试分别写出一个符号条件的数列{an}和{bn};(2)若a1 + b1 = 1,数列{cn}满足:cn = 4 an + l(–1)n–12 bn,且当n ∈ N*时,cn+1 ≥ cn恒成立,求实数l的最大值.
查看答案和解析>>
科目: 来源: 题型:
已知某同学上学途中必须经过三个交通岗,且在每一个交通岗遇到红灯的概率均为
,假设他在3个交通岗遇到红灯的事件是相互独立的,用随机变量
表示该同学遇到红灯的次数.
(1)求该同学在第一个交通岗遇到红灯,其它交通岗未遇到红灯的概率;
(2)若
,则该同学就迟到,求该同学不迟到的概率;
(3)求随机变量
的数学期望和方差
查看答案和解析>>
科目: 来源: 题型:
(本题满分12分) 直角三角形
的直角顶点
为动点,
,
为两个定点,作
于
,动点
满足
,当点
运动时,设点
的轨迹为曲线
,曲线
与
轴正半轴的交点为
.(Ⅰ) 求曲线
的方程;(Ⅱ) 是否存在方向向量为m
的直线
,与曲线
交于
,
两点,使
,且
与
的夹角为
?若存在,求出所有满足条件的直线方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com