科目: 来源: 题型:
(本小题满分16分)已知圆
:
交
轴于
两点,曲线
是以
为长轴,直线:
为准线的椭圆.
(1)求椭圆的标准方程;(2)若
是直线上的任意一点,以
为直径的圆
与圆
相交于
两点,求证:直线
必过定点
,并求出点
的坐标;(3)如图所示,若直线
与椭圆
交于
两点,且
,试求此时弦
的长.
查看答案和解析>>
科目: 来源: 题型:
(本小题共13分)
数列
满足
,
(
),
是常数。
(Ⅰ)当
时,求
及
的值;
(Ⅱ)数列
是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(Ⅲ)求
的取值范围,使得存在正整数
,当
时总有
。
查看答案和解析>>
科目: 来源: 题型:
)如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB。
(1)求证:AB⊥平面PCB;
(2)求二面角C—PA—B的大小的余弦值。
![]()
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)
已知点
,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且
.(1)求动点
的轨迹
的方程;(2)已知圆
过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com