科目: 来源: 题型:
已知函数
,且
(1) 试用含
的代数式表示b,并求
的单调区间;
(2)令
,设函数
在
处取得极值,记点M (
,
),N(
,
),P(
),
,请仔细观察曲线
在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(I)若对任意的m
(
, x
),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(II)若存在点Q(n ,f(n)), x
n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)
查看答案和解析>>
科目: 来源: 题型:
在平面向量中有如下定理:设点O,P,Q,R为同一平面内的点,则P、Q、R三点共线的充要条件是:存在实数t,使
.
如图,在ΔABC中,点E为AB边的中点,点F在AC边上,
且CF=2FA,BF交CE于点M,设
,则
( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
已知定点A(-2,-4),过点A作倾斜角为45 的直线l,交抛物线y2=2px(p>0)于B、C两点,且|BC|=210.(Ⅰ)求抛物线的方程;(Ⅱ)在(Ⅰ)中的抛物线上是否存在点D,使得|DB|=|DC|成立?如果存在,求出点D的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
已知{an}是正数组成的数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+2an,求证:bn ·bn+2<b2n+1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com