科目: 来源: 题型:
一炮弹在A处的东偏北60°的某处爆炸,在A处测到爆炸信号的时间比在B处早4秒,已知A在B的正东方、相距6千米, P为爆炸地点,(该信号的传播速度为每秒1千米)求A、P两地的距离.
查看答案和解析>>
科目: 来源: 题型:
已知圆
上的动点,点Q在NP上,点G在MP上,且满足
.
(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线
,与曲线C交于A、B两点,O是坐标原点,设
是否存在这样的直线
,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线
的方程;若不存在,试说明理由.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)已知动点
到定点
的距离与点
到定直线
:
的距离之比为
.(1)求动点
的轨迹
的方程;(2)设
、
是直线
上的两个点,点
与点
关于原点
对称,若
,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
(1)求证:A1C⊥平面BDE;
(2)求A1B与平面BDE所成角的正弦值。
(3)设F是CC1上的动点(不包括端点C),求证:△DBF是锐角三角形。
![]()
查看答案和解析>>
科目: 来源: 题型:
国家射击队为备战2008年北京奥运会进行紧张艰苦的训练,训练项目完成后,教练总会设计安排一些放松、娱乐性恢复活动。在一次速射“飞碟”的游戏活动中,教练制定如下规则:每次飞碟飞行过程中只允许射击三次,根据飞碟飞行的规律,队员甲在飞行距离为50米远处命中的概率为
.
(1)如果队员甲一共参加了三次射击飞碟的游戏,试求队员甲在这三次游戏中第一枪至少有一次击中的概率。
(2)如果队员甲射击飞行距离为50米远处的飞碟,如果第一次未命中,则进行第二次射击,同时第二次射击时飞碟行距离变为100米;如果第二次未命中,则进行第三次射击,第三次射击时飞碟飞行距离变为150米(此后飞碟不在射程之内).已知,命中的概率与飞碟飞和地距离的平方成反比.求队员甲在一次游戏中命中飞碟的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com