科目: 来源: 题型:
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。
(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;
(2)求生产4件甲产品所获得的利润不少于10万元的概率。
查看答案和解析>>
科目: 来源: 题型:
设
是定义在区间
上的函数,其导函数为
。如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
。
(1)设函数![]()
,其中
为实数。
(i)求证:函数
具有性质
; (ii)求函数
的单调区间。
(2)已知函数
具有性质
。给定
设
为实数,
,
,且
,
若|
|<|
|,求
的取值范围。
查看答案和解析>>
科目: 来源: 题型:
设各项均为正数的数列
的前n项和为
,已知
,数列
是公差为
的等差数列。
(1)求数列
的通项公式(用
表示);
(2)设
为实数,对满足
的任意正整数
,不等式
都成立。求证:
的最大值为
。
查看答案和解析>>
科目: 来源: 题型:
在平面直角坐标系
中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F。设过点T(
)的直线TA、TB与椭圆分别交于点M
、
,其中m>0,
。
![]()
(1)设动点P满足
,求点P的轨迹;
(2)设
,求点T的坐标;
(3)设
,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
查看答案和解析>>
科目: 来源: 题型:
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=
,∠ADE=
。
(1)该小组已经测得一组
、
的值,tan
=1.24,tan
=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使
与
之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,
-
最大?
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离。
查看答案和解析>>
科目: 来源: 题型:
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(
)·
=0,求t的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com