科目: 来源: 题型:
(本小题14分)
设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,
(1)求数列{an}的通项公式,并求Sn关于n的表达式;
(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:,Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小。
查看答案和解析>>
科目: 来源: 题型:
(本小题14分)
某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数k (1≤k≤3)。
(1)求该企业正常生产一年的利润F(x)与出厂价x的函数关系式;
(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.
查看答案和解析>>
科目: 来源: 题型:
(本小题12分)
已知函数f (x)=2sinωx·cos(ωx+
)+
(ω>0)的最小正周期为4π.
(1)求正实数ω的值;
(2)在锐角△ABC中,内角A、B、C的对边分别为a、b、c,且满足
,求f (B)的值.
查看答案和解析>>
科目: 来源: 题型:
给定集合A={a1,a2,a3,… ,an}(n∈N,n≥3),定义ai+aj(1≤i<j≤n,i,j∈N)中所有不同值的个数为集合A两元素和的容量,用L(A)表示,若A={2,4,6,8},则L(A)= ;若数列{an}是等差数列,设集合A={a1,a2,a3,…,am}(其中m∈N*,m为常数),则L(A)关于m的表达式为 。
查看答案和解析>>
科目: 来源: 题型:
在△ABC中有如下结论:“若点M为△ABC的重心,则
”,设a,b,c分别为△ABC的内角A,B,C的对边,点M为△ABC的重心.如果
,则内角A的大小为 ;若a=3,则△ABC的面积为 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com