科目: 来源: 题型:
选修4-4:坐标系统与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为
(
为参数),曲线C2的参数方程为
(
,
为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=
与C1,C2各有一个交点.当
=0时,这两个交点间的距离为2,当
=
时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当
=
时,l与C1,C2的交点分别为A1,B1,当
=
时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
查看答案和解析>>
科目: 来源: 题型:
选修4-1:几何证明选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(I)证明:CD//AB;
(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设
,求
与
的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
| 品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
| 品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据
的的样本方差
,其中
为样本平均数.
查看答案和解析>>
科目: 来源: 题型:
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.
(I)证明:平面PQC⊥平面DCQ;
(II)求二面角Q—BP—C的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com