科目: 来源: 题型:
已知集合
,若集合
,且对任意的
,存在
,使得
(其中
),则称集合
为集合
的一个
元基底.
(Ⅰ)分别判断下列集合
是否为集合
的一个二元基底,并说明理由;
①
,
;
②
,
.
(Ⅱ)若集合
是集合
的一个
元基底,证明:
;
(Ⅲ)若集合
为集合
的一个
元基底,求出
的最小可能值,并写出当
取最小值时
的一个基底
.
查看答案和解析>>
科目: 来源: 题型:
已知焦点在
轴上的椭圆
过点
,且离心率为
,
为椭圆
的左顶点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知过点
的直线
与椭圆
交于
,
两点.
(ⅰ)若直线
垂直于
轴,求
的大小;
(ⅱ)若直线
与
轴不垂直,是否存在直线
使得
为等腰三角形?如果存在,求出直线
的方程;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
在四棱锥
中,底面
是直角梯形,
∥
,
,
,平面
平面
.
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
和平面
所成二面角(小于
)的大小;
(Ⅲ)在棱
上是否存在点
使得
∥平面
?若
存在,求
的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教
育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为
,求
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
已知正三棱柱
的正(主)视
图和侧(左)视图如图所示. 设
的中心分别是
,现将此三棱柱绕直线
旋转,射线
旋转所
成的角为
弧度(
可以取到任意一个实数),对应的俯视图的面积为
,则函数
的最大值为 ;最小正周期为 .
![]()
说明:“三棱柱绕直线
旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,
旋转所成的角为正角,顺时针方向旋转时,
旋转所成的角为负角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com