科目: 来源: 题型:
|
|
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
已知数列{an}的各项均为正数,Sn为其前n项和;且Sn = 2 an -2(n∈N*);
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且bn= (n∈N*);求证:对于任意的正整数n,总有Tn <2;
(3)在正数数列{cn}中,设 (cn) n+1 = an+1(n∈N*);求数列{cn}中的最大项。
查看答案和解析>>
科目: 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分9分.
已知数列
是各项均为正数的等差数列,公差为d(d
0).在
之间和b,c之间共插入
个实数,使得这
个数构成等比数列,其公比为q.
(1)求证:
;
(2)若
,
,求d的值;
(3)若插入的n个数中,有s个位于a,b之间,t个位于b,c之间,且
不都为奇数,试比较s与t的大小,并求插入的n个数的乘积(用
表示).
查看答案和解析>>
科目: 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
对于定义域为
的函数
,若有常数M,使得对任意的
,存在唯一的
满足等式
,则称M为函数
f (x)的“均值”.
(1)判断0是否为函数
≤
≤
的“均值”,请说明理由;
(2)若函数![]()
为常数)存在“均值”,求实数a的取值范围;
(3)已知函数
是单调函数,且其值域为区间I.试探究函数
的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分.
查看答案和解析>>
科目: 来源: 题型:
对任意正整数
,定义
的双阶乘
如下:
当
为偶数时,![]()
![]()
;
当
为奇数时,
.
现有四个命题:
①(2009!!)·(2008!!)=2009!; ② 2008·2008!!=2009!!- 2008!!;
③ 2009!!的个位数字为5; ④(a+b)!! = a!!+b!!(a、b N*)
其中所有正确命题的序号是 .
查看答案和解析>>
科目: 来源: 题型:
若对任意
,
都有唯一确定的
与之对应,则称
为关于
、
的二元函数。
定义:同时满足下列性质的二元函数
为关于实数
、
的广义“距离”;
(I)非负性:
;
(II)对称性:
;
(III)三角形不等式:
对任意的实数
均成立。
给出下列二元函数:
①
;②
;③
;
④
。则其中能够成为关于
、
的广义“距离”的函数编号是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com