科目: 来源: 题型:
本小题满分12分
的内切圆与三边
的切点分别为
,已知
,内切圆圆心
,设点
的轨迹为
.
(1)求
的方程;
(2)过点
的动直线
交曲线
于不同的两点
(点
在
轴的上方),问在
轴上是否存在一定点
(
不与
重合),使
恒成立,若存在,试求出
点的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)
如图,在
,已知A(-
,0), B(
,0), CD
AB于D,
的垂心为H,且![]()
(Ⅰ)求点H的轨迹方程;
(Ⅱ)若过定点F(0,2)的直线交曲线
于不同的两点
(点
在F,H之间),且满足
,求
的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
已知、分别是直线和上的两个动点,线段的长为,是的中点.
(1) 求动点的轨迹的方程.
(2) 过点作与轴不垂直的直线,交曲线于、两点,若在线段上存在点,使得以、为邻边的平行四边形是菱形,试求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
已知实轴长为2a,虚轴长为2b的双曲线S的焦点在x轴上,直线是双曲线S的一条渐近线,而且原点O,点A(a,0)和点B(0,-b)使等式·成立.
(I)求双曲线S的方程;
(II)若双曲线S上存在两个点关于直线对称,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
|
(本题满分14分)第(1)小题满分6分,第(2)小题满分8分。 如图1,,是某地一个湖泊的两条互相垂直的湖堤,线段和曲线段分别是湖泊中的一座栈桥和一条防波堤。为观光旅游的需要,拟过栈桥上某点分别修建与,平行的栈桥、,且以、为边建一个跨越水面的三角形观光平台。建立如图2所示的直角坐标系,测得线段的方程是,曲线段的方程是,设点的坐标为,记。(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度) (1)求的取值范围; (2)试写出三角形观光平台面积关于的函数解析式,并求出该面积的最小值。
查看答案和解析>> 科目: 来源: 题型: (本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。 定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆 若椭圆
如图:直线 查看答案和解析>> 科目: 来源: 题型: (满分18分)本题有2小题,第1小题9分,第2小题9分. 在中,、为定点,为动点,记、、的对边分别为、、,已知,. (1)证明:动点一定在某个椭圆上,并求出该椭圆的标准方程; (2)设点为坐标原点,过点作直线与(1)中的椭圆交于两点,若,求直线的方程. 查看答案和解析>> 同步练习册答案 湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区 违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。 ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号 |