科目: 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分
已知抛物线方程为.
(1)若点在抛物线上,求抛物线的焦点的坐标和准线的方程;
(2)在(1)的条件下,若过焦点且倾斜角为的直线交抛物线于、两点,点在抛物线的准线上,直线、、的斜率分别记为、、,求证:、、成等差数列;
(3)对(2)中的结论加以推广,使得(2)中的结论成为推广后命题的特例,请写出推广命题,并给予证明.
说明:第(3)题将根据结论的一般性程度给予不同的评分.
查看答案和解析>>
科目: 来源: 题型:
(本题满分12分)已知椭圆
的离心率为
,短轴的一个端点到右焦点的距离为
,直线
交椭圆于不同的两点A,B
(Ⅰ)求椭圆的方程
(Ⅱ)若坐标原点O到直线
的距离为
,求
面积的最大值
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)已知椭圆C:
(a>b>0)的离心率为
,其左、右焦点分别是F1、F2,点P是坐标平面内的一点,且|OP|=
,
·
=
(点O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线y=x与椭圆C在第一象限交于A点,若椭圆C上两点M、N使
+
=λ
,λ∈(0,2)求△OMN面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆
:
,
为其左、右焦点,
为椭圆
上任一点,
的重心为
,内心
,且有
(其中
为实数).
(1)求椭圆
的离心率
;
(2)过焦点
的直线
与椭圆
相交于点
、
,若
面积的最大值为3,求椭圆
的方程.
查看答案和解析>>
科目: 来源: 题型:
|
(本小题满分12分) 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当< 时,求实数取值范围. 查看答案和解析>> 同步练习册答案 湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区 违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。 ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号 |