科目: 来源: 题型:
(本小题满分13分)
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
在第一象限相切于点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求直线
的方程以及点
的坐标;
(Ⅲ)是否存在过点
的直线
与椭圆
相交于不同的两点
,满足
?若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
(19)(本小题共14分)
已知抛物线
,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(Ⅰ)证明:直线
的斜率互为相反数;
(Ⅱ)求
面积的最小值;
(Ⅲ)当点
的坐标为
,且
.根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):
① 直线
的斜率是否互为相反数?
②
面积的最小值是多少?
查看答案和解析>>
科目: 来源: 题型:
(本题满分14分)
在直角坐标系xOy中,椭圆C1:
的左、右焦点分别为F1、F2.其中F2也是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A、B两点,若
·
=0,求直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
(本小题共14分)
已知
,动点
到定点![]()
的距离比
到定直线
的距离小
.
(I)求动点
的轨迹
的方程;
(Ⅱ)设
是轨迹
上异于原点
的两个不同点,
,求
面积的最小值;
(Ⅲ)在轨迹
上是否存在两点
关于直线
对称?若存在,求出直线
的方程,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
(本小题共14分)
已知椭圆的中点在原点O,焦点在x轴上,点
是其左顶点,点C在椭圆上且![]()
(I)求椭圆的方程;
(II)若平行于CO的直线
和椭圆交于M,N两个不同点,求
面积的最大值,并求此时直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
(13分)已知抛物线
的焦点为
,过焦点
且不平行于x轴的动直线
交抛物线于
,
两点,抛物线在
、
两点处的切线交于点
.
(Ⅰ)求证:
,
,
三点的横坐标成等差数列;
(Ⅱ)设直线
交该抛物线于
,
两点,求四边形
面积的最小值.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)
已知抛物线的焦点
在
轴上,抛物线上一点
到准线的距离是
,过点
的直线与抛物线交于
,
两点,过
,
两点分别作抛物线的切线,这两条切线的交点为
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)求
的值;
(Ⅲ)求证:
是
和
的等比中项.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
已知曲线
与直线
交于两点
和
,且
.记曲线
在点
和点
之间那一段
与线段
所围成的平面区域(含边界)为
.设点
是
上的任一点,且点
与点
和点
均不重合.
(1)若点
是线段
的中点,试求线段
的中点
的轨迹方程;.
(2)若曲线
与
有公共点,试求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
(本小题共14分)
已知椭圆
和圆
:
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(Ⅰ)(ⅰ)若圆
过椭圆的两个焦点,求椭圆的离心率
;
(ⅱ)若椭圆上存在点
,使得
,求椭圆离心率
的取值范围;
(Ⅱ)设直线
与
轴、
轴分别交于点
,
,求证:
为定值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com