科目: 来源: 题型:
(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)已知抛物线
:
,直线
交
于
两点,
![]()
是线段
的中点,过
作
轴的垂线交
于点
.
(Ⅰ)求
点的坐标;
(Ⅱ)是否存在实数
使
,若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
(2009浙江理)(本题满分15分)已知椭圆
:
的右顶点为
,过
的焦点且垂直长轴的弦长为
.
(I)求椭圆
的方程;
(II)设点
在抛物线
:
上,
在点
处
的切线与
交于点
.当线段
的中点与
的中
点的横坐标相等时,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
(2009北京文)(本小题共14分)
已知双曲线
的离心率为
,右准线方程为
。
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线
与双曲线C交于不同的两点A,B,且线段AB的中点在圆
上,求m的值.
查看答案和解析>>
科目: 来源: 题型:
(2009北京理)(本小题共14分)
已知双曲线
的离心率为
,右准线方程为![]()
(Ⅰ)求双曲线
的方程;
(Ⅱ)设直线
是圆
上动点
处的切线,
与双曲线
交
于不同的两点
,证明
的大小为定值.
查看答案和解析>>
科目: 来源: 题型:
(2009山东卷理)(本小题满分14分)
设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
查看答案和解析>>
科目: 来源: 题型:
(2009全国卷Ⅱ文)(本小题满分12分)
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
成立?
若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。
解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。
查看答案和解析>>
科目: 来源: 题型:
(2009广东卷理)(本小题满分14分)
已知曲线
与直线
交于两点
和
,且
.记曲线
在点
和点
之间那一段
与线段
所围成的平面区域(含边界)为
.设点
是
上的任一点,且点
与点
和点
均不重合.
(1)若点
是线段
的中点,试求线段
的中点
的轨迹方程;
(2)若曲线
与
有公共点,试求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
(2009天津卷文)(本小题满分14分)
已知椭圆
(
)的两个焦点分别为
,过点
的直线与椭圆相交于点A,B两点,且![]()
(Ⅰ求椭圆的离心率
(Ⅱ)直线AB的斜率;
(Ⅲ)设点C与点A关于坐标原点对称,直线
上有一点H(m,n)(
)在
的外接圆上,求
的值。
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)已知中心在原点的双曲线C的右焦点为(2, 0),实轴长为
.
(Ⅰ)求双曲线C的方程;()
(Ⅱ)若直线l:
与双曲线C的左支交于A、B两个不同点,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,线段AB的垂直平分线l0与y轴交于M(0,b),求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com