科目: 来源: 题型:
(本题满分10分)
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为
, 若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用ξ表示更换费用.
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出ξ的分布列,并求ξ的数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.
(Ⅰ)求p;
(Ⅱ)求电流能在M与N之间通过的概率;
(Ⅲ)
表示T1,T2,T3,T4中能通过电流的元件个数,求
的期望.
![]()
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(I)若某位顾客消费128元,求返券金额不低于30元的概率;
(II)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).
求随机变量X的分布列和数学期望。
查看答案和解析>>
科目: 来源: 题型:
(本小题共13分)
某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
| 同意 | 不同意 | 合计 | |
| 教师 | 1 | ||
| 女生 | 4 | ||
| 男生 | 2 |
(I)请完成此统计表;
(II)试估计高三年级学生“同意”的人数;
(III)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同决的概率.”
查看答案和解析>>
科目: 来源: 题型:
(14分)
某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为
,师徒二人各加工2个零件都是精品的概率为![]()
(I)求徒弟加工2个零件都是精品的概率;
(II)求徒弟加工该零件的精品数多于师父的概率;
(III)设师徒二人加工出的4个零件中精品个数为
,求
的分布列与均值E
.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)
在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.
(Ⅰ)计算样本的平均成绩及方差;
(Ⅱ)现从10个样本中随机抽出2名学生的成绩,设选出学生的分数为90分以上的人数为
,求随机变量
的分布列和均值.
| 9 | 2 | 8 | 8 |
| 8 | 5 | 5 | |
| 7 | 4 | 4 | 4 |
| 6 | 0 | 0 |
查看答案和解析>>
科目: 来源: 题型:
(本小题共13分)
某学校高一年级开设了
五门选修课.为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修一门课程.假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的.
(Ⅰ)求甲、乙、丙三名学生参加五门选修课的所有选法种数;
(Ⅱ)求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;
(Ⅲ)设随机变量
为甲、乙、丙这三名学生参加
课程的人数,求
的分布列与数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分10分)
甲、乙、丙三名射击运动员射中目标的概率分别为![]()
,三人各射击一次,击中目标的次数记为
.
(1)求
的分布列及数学期望;
(2)在概率
(
=0,1,2,3)中, 若
的值最大, 求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)(
某种项目的高*考#资^源*网射击比赛,开始时在距目标100m处射击,如果命中记6分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已经在150m处,这时命中记3分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已经在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且不再继续射击.已知射手甲在100m处击中目标的高*考#资^源*网概率为
,他的高*考#资^源*网命中率与其距目标距离的高*考#资^源*网平方成反比,且各次射击是否击中目标是相互独立的高*考#资^源*网.
(Ⅰ)分别求这名射手在150m处、200m处的高*考#资^源*网命中率;
(Ⅱ)设这名射手在比赛中得分数为ξ,求随机变量ξ的高*考#资^源*网分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com