相关习题
 0  64624  64632  64638  64642  64648  64650  64654  64660  64662  64668  64674  64678  64680  64684  64690  64692  64698  64702  64704  64708  64710  64714  64716  64718  64719  64720  64722  64723  64724  64726  64728  64732  64734  64738  64740  64744  64750  64752  64758  64762  64764  64768  64774  64780  64782  64788  64792  64794  64800  64804  64810  64818  266669 

科目: 来源: 题型:

(福建卷文18)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.

 (Ⅰ)求恰有二人破译出密码的概率;

(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

查看答案和解析>>

科目: 来源: 题型:

(广东卷文19)某初级中学共有学生2000名,各年级男、女生人数如下表:

初一年级

初二年级

初三年级

女生

373

x

y

男生

377

370

z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

x的值;

现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

已知y245,z245,求初三年级中女生比男生多的概率.

查看答案和解析>>

科目: 来源: 题型:

(海南宁夏卷文19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。

查看答案和解析>>

科目: 来源: 题型:

(湖南卷文16)甲乙丙三人参加一家公司的招聘面试,面试合格者可正式签约。甲表示只要面试合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是,且面试是否合格互不影响。求:

(I)至少一人面试合格的概率;

(II)没有人签约的概率。

查看答案和解析>>

科目: 来源: 题型:

(江西卷文18)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.

(1)求两年后柑桔产量恰好达到灾前产量的概率;

(2)求两年后柑桔产量超过灾前产量的概率.

查看答案和解析>>

科目: 来源: 题型:

(辽宁卷文18)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:

周销售量

2

3

4

频数

20

50

30

(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;

(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求

(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;

(ⅱ)该种商品4周的销售量总和至少为15吨的概率.

查看答案和解析>>

科目: 来源: 题型:

(全国Ⅰ卷文20)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.

查看答案和解析>>

科目: 来源: 题型:

(全国Ⅱ卷文19)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.

设甲、乙的射击相互独立.

(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;

(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.

查看答案和解析>>

科目: 来源: 题型:

(山东卷文18)现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求被选中的概率;

(Ⅱ)求不全被选中的概率.

查看答案和解析>>

科目: 来源: 题型:

(陕西卷文18)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

同步练习册答案