科目: 来源: 题型:
在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.
(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的数学期望;
(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?
查看答案和解析>>
科目: 来源: 题型:
(本题满分10分)
今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以扰此计算出自己每天的碳排放量。例如:家居用电的碳排放量(千克)=耗电度数×.785,汽车的碳排放量(千克)=油耗公升数×0.785等。某班同学利用寒假在两个小区逐户进行了一次生活习惯进否符合低碳观念的调查。若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”。这二族人数占各自小区总人数的比例P数据如下:
|
| ||||||||||||||||
(I)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;
(II)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列。如果2周后随机地从A小区中任选25个人,记
表示25个人中低碳族人数,求![]()
查看答案和解析>>
科目: 来源: 题型:
已知某同学上学途中必须经过三个交通岗,且在每一个交通岗遇到红灯的概率均为
,假设他在3个交通岗遇到红灯的事件是相互独立的,用随机变量
表示该同学遇到红灯的次数.
(1)求该同学在第一个交通岗遇到红灯,其它交通岗未遇到红灯的概率;
(2)若
,则该同学就迟到,求该同学不迟到的概率;
(3)求随机变量
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是
,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。
查看答案和解析>>
科目: 来源: 题型:
(本小题共13分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q
为0.25,在B处的命中率为q
,该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
|
| 0 | 2 | 3 | 4 | 5 |
| p | 0.03 | P1 | P2 | P3 | P4 |
(1)求q
的值;
(2)求随机变量
的数学期望E
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
查看答案和解析>>
科目: 来源: 题型:
(本小题共13分)
在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.
(Ⅰ) 求该考生8道题全答对的概率;
(Ⅱ)
若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.
查看答案和解析>>
科目: 来源: 题型:
(13分)在某次抽奖活动中,一个口袋里装有5个白球和5个黑球,所有球除颜色外无任何不同,每次从中摸出2个球,观察颜色后放回,若为同色,则中奖。
(Ⅰ)求仅一次摸球中奖的概率;
(Ⅱ)求连续2次摸球,恰有一次不中奖的概率;
(Ⅲ)记连续3次摸球中奖的次数为
,求
的分布列。
查看答案和解析>>
科目: 来源: 题型:
已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环)
的概率为 ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com