科目: 来源: 题型:
(13分)、甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。
(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?
(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,否则,则乙胜。你认为此游戏是否公平,说明你的理由。
查看答案和解析>>
科目: 来源: 题型:
(本题满分15分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)分别求依方案甲所需化验次数与依方案乙所需化验次数的分布列;
(Ⅱ)
表示依方案乙所需化验次数,求
的期望.。
查看答案和解析>>
科目: 来源: 题型:
甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.5,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互之间没有影响.用
表示本场比赛的局数,则
的数学期望为 ▲ .
查看答案和解析>>
科目: 来源: 题型:
(本题满分16分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用
表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量
的概率分布;
(3)求甲取到白球的概率.
查看答案和解析>>
科目: 来源: 题型:
如图,在某城市中,
两地之间有整齐的方格形道路网,其中
、
、
、
是道路网中位于一条对角线上的4个交汇处.今在道路网
处的甲、乙两人分别要到
处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达
为止. ![]()
(1)求甲经过
到达N的方法有多少种;
(2)求甲、乙两人在
处相遇的概率;
(3)求甲、乙两人相遇的概率.
查看答案和解析>>
科目: 来源: 题型:
(本题满分10分)
一个袋中装有若干个大小质地相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是
;从袋中任意摸出2个球,至少得到1个白球的概率是
.
(Ⅰ)若袋中共有10个球,
①求白球的个数;
②从袋中任意摸出3个球,记得到白球的个数为
,求随机变量
的数学期望
.
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
,并指出袋中哪种颜色的球个数最少.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com