相关习题
 0  66921  66929  66935  66939  66945  66947  66951  66957  66959  66965  66971  66975  66977  66981  66987  66989  66995  66999  67001  67005  67007  67011  67013  67015  67016  67017  67019  67020  67021  67023  67025  67029  67031  67035  67037  67041  67047  67049  67055  67059  67061  67065  67071  67077  67079  67085  67089  67091  67097  67101  67107  67115  266669 

科目: 来源: 题型:

(本小题满分13分)(Ⅰ)小问5分,(Ⅱ)小问8分)

某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的求该市的任4位申请人中:

   (Ⅰ)恰有2人申请A片区房源的概率;

   (Ⅱ)申请的房源所在片区的个数的分布列与期望

查看答案和解析>>

科目: 来源: 题型:

某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙丙公司面试的概率为,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若,则随机变量X的数学期望

    

查看答案和解析>>

科目: 来源: 题型:

(本小题满分12分)

某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.

(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;

(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:

品种甲

403

397

390

404

388

400

412

406

品种乙

419

403

412

418

408

423

400

413

分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

附:样本数据的的样本方差,其中为样本平均数.

查看答案和解析>>

科目: 来源: 题型:

(本小题满分12分)

某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.

   (1)求X的分布列;

   (2)求此员工月工资的期望。

查看答案和解析>>

科目: 来源: 题型:

(本小题满分12分)

某商店试销某种商品20天,获得如下数据:

日销售量(件)

0

1

2

3

频数

1

5

9

5

试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。

(Ⅰ)求当天商品不进货的概率;

(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。

 

查看答案和解析>>

科目: 来源: 题型:

(本小题满分13分)

       为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

编号

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;

(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;

(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。

查看答案和解析>>

科目: 来源: 题型:

本小题共13分

以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。

       (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;

       (Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。

       (注:方差,其中,…… 的平均数)

查看答案和解析>>

科目: 来源: 题型:

(本小题满分13分)

工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.

(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?

(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中的一个排列,求所需派出人员数目的分布列和均值(数字期望)

(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。

查看答案和解析>>

科目: 来源: 题型:

(本小题满分12分)

红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。

(Ⅰ)求红队至少两名队员获胜的概率;

(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

(本小题满分13分)

如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:

时间(分钟)

10~20

20~30

30~40

40~50

50~60

L1的频率

0.1

0.2

0.3

0.2

0.2

L2的频率

0

0.1

0.4

0.4

0.1

现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?

(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望。

查看答案和解析>>

同步练习册答案