科目: 来源: 题型:
〈本题满分12分〉甲、乙两同学进行投篮比赛,每一简每人各投两次球,规定进球数多者该局获胜,进球数相同则为平局.已知甲每次投进的概率为2/3乙每次投进的概率为1/2,甲、乙之间的投篮相互独立.
(1) 求甲、乙两同学进行一扃比赛的结果不是平局的概率;
(2) 设3局比赛中,甲每局进两球获胜的局数为
。求
的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
某市举行一次数学新课程培训,共邀请15名研究不同版本教材的骨干教师,数据如下表所示:
| 版本 | 人教A版 | 人教B版 | ||
| 性别 | 男教师 | 女教师 | 男教师 | 女教师 |
| 人数 | 6 | 3 | 4 | 2 |
(Ⅰ)从这15名教师中随机选出2名,则2人恰好是研究不同版本教材的男教师的概率是多少?
(Ⅱ)培训活动随机选出2名代表发言,设发言代表中研究人教B版教材的女教师人数为
,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目: 来源: 题型:
(本题满分12分)
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为
,服用B有效的概率为
.
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用
表示这3个试验组中甲类组的个数,求
的分布列和数学期望。
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是
.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为
,另两枚C、D为非均匀硬币,正面向上的概率均为a(0<a<1),把这四枚硬币各投掷一次,设孜表示正面向上的枚数.
(1)若A、B出现一正一反与C、D出现两正的概率相等,求a的值;
(2)求孜的分布列及数学期望(用a表示);
(3)若出现2枚硬币正面向上的概率最大,试求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
| 休假次数 |
|
|
|
|
| 人数 |
|
|
|
|
根据上表信息解答以下问题:
(Ⅰ)从该单位任选两名职工,用
表示这两人休年假次数之和,记“函数
在区间
,
上有且只有一个零点”为事件
,求事件
发生的概率
;
(Ⅱ)从该单位任选两名职工,用
表示这两人休年假次数之差的绝对值,求随机变量
的分布列及数学期望
.
查看答案和解析>>
科目: 来源: 题型:
(本题满分12分)
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从
道备选题中一次性抽取
道题独立作答,然后由乙回答剩余
题,每人答对其中
题就停止答题,即闯关成功.已知在
道备选题中,甲能答对其中的
道题,乙答对每道题的概率都是
.
(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本题满分12分 )
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间
的分布列及期望.
查看答案和解析>>
科目: 来源: 题型:
(理)(本小题满分12分)
市教育局举行科普知识竞赛,参赛选手过第一关需要回答三个问题,其中前两个问题回答正确各得10分,第三个问题回答正确得20分,若回答错误均得0分,总分不少于30分为过关。如果某位选手回答前两个问题正确的概率都是
,回答第三个问题正确的概率是
,且各题回答正确与否互不影响,记这位选手回答这三个问题的总得分为X.
(I)求这位选手能过第一关的概率;
(Ⅱ)求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com