科目: 来源: 题型:
(本小题满分10分)
一个口袋装有5个红球,3个白球,这些球除颜色外完全相同,某人一次从中摸出3个球,其中白球的个数为
.
⑴求摸出的三个球中既有红球又有白球的概率;
⑵求
的分布列及
的数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分10分)
有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第
关时,需要抛掷
次骰子,当
次骰子面朝下的点数之和大于
时,则算闯此关成功,并且继续闯关,否则停止闯关. 每次抛掷骰子相互独立.
(Ⅰ)求仅闯过第一关的概率;
(Ⅱ)记成功闯过的关数为
,求
的分布列和期望.
查看答案和解析>>
科目: 来源: 题型:
【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤。
某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求:
(1)请预测旅客乘到第一班客车的概率;
(2)旅客候车时间的分布列;
(3)旅客候车时间的数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
已知集合
,集合![]()
,集合![]()
(1)求从集合
中任取一个元素是(3,5)的概率;
(2)从集合
中任取一个元素,求
的概率;
(3)设
为随机变量,
,写出
的分布列,并求
。
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):
若身高在175cm以上(包括175cm)定义为“高个子”,
身高在175cm以下(不包括175cm)定义为“非高个子”,
且只有“女高个子”才担任“礼仪小姐”。
(1)如果用分层抽样的方法从“高个子”和“非高个子”中
中提取5人,再从这5人中选2人,那么至少有一人是
“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,试写出
的分布列,并求
的数学期望。
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有
次选题答题的机会,选手累计答对
题或答错
题即终止其初赛的比赛:答对
题者直接进入决赛,答错
题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为
.
⑴求选手甲可进入决赛的概率;
⑵设选手甲在初赛中答题的个数为
,试求
的分布列,并求
的数学期望.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.
⑴求
;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?
⑵若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为
,求
的分布列及数学期望
.
| 甲 | 乙 | |||||||
|
|
|
|
| |||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||
查看答案和解析>>
科目: 来源: 题型:
(本题满分14分)
某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
![]()
![]()
(Ⅰ)补全频率分布直方图并求
、
、
的值;
(Ⅱ)从
岁年龄段的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,记选取的
名领队中年龄在
岁的人数为
,求
的分布列和期望
.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
某班将要举行篮球投篮比赛,比赛规则是:每位选手可以选择在A区投篮2次或选择在B区投篮3次.在A区每进一球得2分,不进球得0分;在B区每进一球得3分,不进球得0分,得分高的选手胜出.已知参赛选手甲在A区和B区每次投篮进球的概率分别为
和
(Ⅰ)如果选手甲以在A、B区投篮得分的期望高者为选择投篮区的标准,问选手甲应该选择哪个区投篮?
(Ⅱ)求选手甲在A区投篮得分高于在B区投篮得分的概率.
查看答案和解析>>
科目: 来源: 题型:
(10分)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有
次选题答题的机会,选手累计答对
题或答错
题即终止其初赛的比赛:答对
题者直接进入决赛,答错
题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为
.
⑴求选手甲可进入决赛的概率;
⑵设选手甲在初赛中答题的个数为
,试求
的分布列,并求
的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com