科目: 来源: 题型:
(本题满分14分)
已知正项数列
满足:对任意正整数
,都有
成等差数列,
成等比数列,且![]()
(Ⅰ)求证:数列
是等差数列;
(Ⅱ)求数列
的通项公式;
(Ⅲ) 设
如果对任意正整数
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)
己知函数
的反函数是
,设数列
的前n项和为Sn,对任意的正整数n,都有
成立,且bn=f-1(an)
(I)求数列{an}与数列{bn}的通项公式
(II)设数列
的前n项是否存在使得
成立?若存在,找出一个正整数k:若不存在,请说明理由:
(III)记
,设数列
的前n项和为
,求证:对任意正整数n都有
.
查看答案和解析>>
科目: 来源: 题型:
(本题满分14分)已知{ an }是等差数列,{ bn }是等比数列,Sn是{ an }的前n项和,a1 = b1 = 1,
.
(Ⅰ)若b2是a1,a3的等差中项,求an与bn的通项公式;
(Ⅱ)若an∈N*,{
}是公比为9的等比数列,
求证:
.
查看答案和解析>>
科目: 来源: 题型:
设函数
.
(1)、当
,解不等式
(6分)
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为
和
,求
恒成立的概率; (8分)
查看答案和解析>>
科目: 来源: 题型:
|
|
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其
中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角
形斜边开辟观赏小道(其中的一条为线段
). 某园林公司承接了该中心花园的施工建设,
在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点
到焦点的最近距离为1(单位:百米).
(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;
(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com