科目: 来源: 题型:
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率; (ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数
的分布列及数学期望
.
查看答案和解析>>
科目: 来源: 题型:
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:(1)他第3次击中目标的概率是0.9;(2)他恰好击中目标3次的概率是
;(3)他至少击中目标1次的概率是
.
其中正确结论的序号是 (写出所有正确结论的序号).
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持,该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
| 评估得分 | [50,60) | [60,70) | [70,80) | [80,90] |
| 评定类型 | 不合格 | 合格 | 良好 | 优秀 |
| 贷款金额(万元) | 0 | 200 | 400 | 800 |
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下:
(1)估计该系统所属企业评估得分的中位数及平均分;
(2)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次停止,设停止时,取球次数为随机变量,则
__________▲________.(只需列式,不需计算结果)
查看答案和解析>>
科目: 来源: 题型:
(本小题满分16分)
在一个盒子中,放有标号分别为
,
,
的三张卡片,现从这个盒子中,有放回地先
后抽得两张卡片的标号分别为
、
,记
.
(Ⅰ)求随机变量
的最大值,并求事件“
取得最大值”的概率;
(Ⅱ)求随机变量
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
马老师从课本上抄录一个随机变量
的概率分布列如下表:
|
| 1 | 2 | 3 |
|
| ? | ! | ? |
请小王同学计算
的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小王给出了正确答案
= .
查看答案和解析>>
科目: 来源: 题型:
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准如下:每车每次租若不超过两小时,则免费;超过两小时的部分为每小时2元(不足1小时的部分按1小时计算). 甲、乙独立来该租车点租车骑游,各租一车一次.设甲、乙不超过两小时还车的概率分别为
;两小时以上且不超过三小时还车的概率分别为
;两人租车时间都不会超过四小时.
(Ⅰ)求出甲、乙所付租车费用相同的概率;
(Ⅱ)设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com