科目: 来源: 题型:
(本小题满分13分)
如图,在矩形ABCD中,AB=2,BC=
,
为等边三角形,又平面PAD⊥平面ABCD.w.w.w.k.
s.5(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求
的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.
![]()
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)
如图,已知菱形
的边长为
,
,
.将菱形
沿对角线
折起,使
,得到三棱锥
.
(Ⅰ)若点
是棱
的中点,求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设点
是线段
上一个动点,试确定
点的位置,使得
,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)
如图,菱形
的边长为
,
,
.将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)求三棱锥
的体积.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分13分)
如图,在四棱锥
中,底面
为直角梯形,且
,
,侧面
底面
. 若
.
(Ⅰ)求证:
平面
;
(Ⅱ)侧棱
上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。
(1)求异面直线PA与BF所成角的正切值。
(2)求证:EF⊥平面PCD。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com