科目: 来源: 题型:
(本小题满分14分)
给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 若椭圆C的一个焦点为
,其短轴上的一个端点到
距离为
.
(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点
的直线
与椭圆C只有一个公共点,且
截椭圆C的“伴随圆”所得的弦长为
,求
的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线
,使得
与椭圆C都只有一个公共点,试判断直线
的斜率之积是否为定值,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
(本小题共12分)
在平面直角坐标系中,已知向量a=(
x,y+1),向量b=(x,y—1),a⊥b,动点M
(x,y)的轨迹为E。
(Ⅰ)证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点
A、B,且OA⊥OB(O为坐标原点),并求出该圆的方程;
(Ⅱ)设直线l与圆C:x
+y
=R
(1<R<2)相切于A
,且l与轨迹E只有一个
公共点B
,当R为何值时,| A
B
|取得最大值?并求出最大值。
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)
已知两点M(-1,0),N(1,0),且点P使
,
,
成公差小于零的等差数列。
(1)点P的轨迹是什么曲线?
(2)若点P的坐标为(x0,y0),记为θ为
的夹角,求tanθ.
查看答案和解析>>
科目: 来源: 题型:
已知点A(5,0)和⊙B:
,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q,则点Q(x,y)所满足的轨迹方程为( ▲ )
A.
B.
C .
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
( 本小题满分12分)
已知点
是离心率为
的椭圆
:
上的一点.斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点不重合.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线
、
的斜率之和为定值.
查看答案和解析>>
科目: 来源: 题型:
(本小题满分14分)
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
(本题满分13分)已知椭圆
经过点(0,
),离心率为
,直线l经过椭圆C的右焦点F交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且
,当直线l的倾斜角变化时,探求
的值是否为定值?若是,求出
的值,否则,说明理由;
(Ⅲ)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com