科目: 来源: 题型:
设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(
2t+3)Sn-1=3t (t>0,n=2,3,4…).
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
)(n=2,3,4…),求数列{bn}的通项bn;
(3)求和:
b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
查看答案和解析>>
科目: 来源: 题型:
数列{an}中,a
1=8,a4=2且满足an+2=2an+1-an,(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn;
(3)设bn=
(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>
成立?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
数列{an}满足a1=2,对于任意的n∈N*都有an>0, 且(n+1)an2+an·an+1-nan+12=0,
又知数列{bn}的通项为bn=2n-1+1.
(1)求数列{an}的通项an及它的前n项和Sn;
(2)求数列{bn}的前n项和Tn;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com