科目: 来源: 题型:
已知函数f(x)=ax2+ln x(a∈R)
(Ⅰ)当a=2时,求f(x)在区间[e,e2]上的最大值和最小值;
(Ⅱ)如果函数g(x),f1(x),f2(x)在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“伴随函数”.已知函数f1(x)=
x2+2ax+(1-a2)ln x,f2(x)=
x2+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“伴随函数”,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
已知椭圆
+
=1(a>b>0)的离心率为
,且过点(0,1).
(Ⅰ)求此椭圆的方程;
(Ⅱ)已知定点E(-1,0),直线y=kx+2与此椭圆交于C、D两点.是否存在实数k,使得以线段CD为直径的圆过E点.如果存在,求出k的值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=
+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案和解析>>
科目: 来源: 题型:
经过点F(0,1)且与直线y=-1相切的动圆的圆心轨迹为M.点A、D在轨迹M上,且关于y轴对称,D(x0,y0),B(x1,y1), C(x2,y2),-x0<x1<x0<x2 ,直线BC平行于轨迹M在点D处的切线。
(Ⅰ)求轨迹M的方程;
(Ⅱ)证明:∠BAD=∠CAD.
查看答案和解析>>
科目: 来源: 题型:
定义在R上的函数f(x)=
x3+cx+3 ,f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4ln x-f′(x),求g(x)的极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com