科目: 来源:2012届山东省潍坊市四县一校高三教学质量监测理科数学 题型:解答题
(本小题满分12分)(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答
只以甲题计分)
甲:设数列
的前
项和为
,且
;数列
为等差数列,且![]()
(Ⅰ)求数列
的通项公式
(Ⅱ)若
,
为数列
的前![]()
项和,求![]()
乙:定义在[-1,1]上的奇函数
,已知当
时,![]()
(Ⅰ)求
在[0,1]上的最大值
(Ⅱ)若
是[0,1]上的增函数,求实数
的取值范围
查看答案和解析>>
科目: 来源:2012届江苏省南京市高三年级学情调研卷数学 题型:解答题
(本小题满分16分)设等差数列{an}的前n项和是Sn,已知S3=9,S6=36.
(1)求数列{an}的通项公式;
(2)是否存在正整数m、k,使am,am+5,ak成等比数列?若存在,求出m和k的值,若不存在,说明理
由;
(3)设数列{bn}的通项公式为bn=3n-2.集合A={x∣x=an,n∈N*},B={x∣x=bn,n∈N*}.将集合A∪B中的元素从小到大依次排列,构成数列c1,c2,c3
,
…,求{cn}的通项公式.
查看答案和解析>>
科目: 来源:2012届广东省珠海市高三第一次月考理科数学 题型:解答题
.(本小题满分14分)已知定义在
上的奇函数
满足
,且对任意
有
.
(Ⅰ)判断
在
上的奇偶性,并加以证明.
(Ⅱ)令
,
,求数列
的通项公式.
(Ⅲ)设
为
的前
项和,若
对
恒成立,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com