相关习题
 0  73726  73734  73740  73744  73750  73752  73756  73762  73764  73770  73776  73780  73782  73786  73792  73794  73800  73804  73806  73810  73812  73816  73818  73820  73821  73822  73824  73825  73826  73828  73830  73834  73836  73840  73842  73846  73852  73854  73860  73864  73866  73870  73876  73882  73884  73890  73894  73896  73902  73906  73912  73920  266669 

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间几何体练习卷(解析版) 题型:选择题

一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是(  )

 

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;

(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图,在三棱柱ABC­A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;

(2)求二面角A1­BC1­B1的余弦值;

(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角A­BD­C为60°,如图(2).

(1)求证:AE⊥平面BDC;

(2)求直线AC与平面ABD所成角的余弦值.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;

(2)求二面角E­AP­B的余弦值.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;

(2)求B点到平面PCD的距离;

(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;

(2)求二面角F­CD­A的余弦值.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图,在四棱锥P­ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2,E是PB上任意一点.

(1)求证:AC⊥DE;

(2)已知二面角A­PB­D的余弦值为,若E为PB的中点,求EC与平面PAB所成角的正弦值.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­DCD1.

(1)当点E在棱AB上移动时,证明:D1E⊥A1D;

(2)在棱AB上是否存在点E,使二面角D1­EC­D的平面角为?若存在,求出AE的长;若不存在,请说明理由.

 

查看答案和解析>>

科目: 来源:2013-2014学年上海交大附中高三数学理总复习二等差数列、等比数列练习卷(解析版) 题型:选择题

设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=(  )

A.-6            B.-4

C.-2                      D.2

 

查看答案和解析>>

同步练习册答案