科目: 来源:2014届北京101中学高三上学期10月阶段性考试理科数学试卷(解析版) 题型:解答题
如图所示,正方形
与矩形
所在平面互相垂直,
,点
为
的中点.
![]()
(1)求证:
∥平面
;
(2)求证:![]()
![]()
;
(3)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2014届北京101中学高三上学期10月阶段性考试理科数学试卷(解析版) 题型:解答题
某品牌汽车的4
店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4
店经销一辆该品牌的汽车,顾客若一次付款,其利润为1万元;若分2期付款或3期付款,其利润为1.5万元;若分4期付款或5期付款,其利润为2万元.用
表示经销一辆该品牌汽车的利润.
|
付款方式 |
一次 |
分2期 |
分3期 |
分4期 |
分5期 |
|
频数 |
40 |
20 |
a |
10 |
b |
(1)若以频率作为概率,求事件
:“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率
;
(2)求
的分布列及其数学期望
.
查看答案和解析>>
科目: 来源:2014届北京101中学高三上学期10月阶段性考试理科数学试卷(解析版) 题型:解答题
已知函数
,
(1)求函数
的极值点;
(2)若直线
过点
,并且与曲线
相切,求直线
的方程;
(3)设函数
,其中
,求函数
在
上的最小值(其中
为自然对数的底数).
查看答案和解析>>
科目: 来源:2014届北京101中学高三上学期10月阶段性考试理科数学试卷(解析版) 题型:解答题
已知椭圆
:![]()
,
(1)若椭圆的长轴长为4,离心率为
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点
的直线
与椭圆
交于不同的两点
,且
为锐角(
为坐标原点),求直线
的斜率
的取值范围;
(3)过原点
任意作两条互相垂直的直线与椭圆
:![]()
相交于
四点,设原点
到四边形
的一边距离为
,试求
时
满足的条件.
查看答案和解析>>
科目: 来源:2014届北京101中学高三上学期10月阶段性考试理科数学试卷(解析版) 题型:解答题
设
是由
个实数组成的
行
列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(1)数表
如表1所示,若经过两“操”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1
|
1 |
2 |
3 |
|
|
|
1 |
0 |
1 |
![]()
(2)数表
如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数
的所有可能值;表2
![]()
(3)对由
个实数组成的
行
列的任意一个数表
,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负实数?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com