相关习题
 0  74701  74709  74715  74719  74725  74727  74731  74737  74739  74745  74751  74755  74757  74761  74767  74769  74775  74779  74781  74785  74787  74791  74793  74795  74796  74797  74799  74800  74801  74803  74805  74809  74811  74815  74817  74821  74827  74829  74835  74839  74841  74845  74851  74857  74859  74865  74869  74871  74877  74881  74887  74895  266669 

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:填空题

已知m,n为直线,a,b为平面,给出下列结论:
⇒n∥a  ②⇒m∥n  ③⇒m∥n  ④⇒α∥β
其中正确结论的序号是:   

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,二面角C1-BD-C的正切值为   

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:填空题

①若a垂直于α内的两条相交直线,则a⊥α;
②若a垂直于α内的无数条直线,则a⊥α;
③若b∥β,则b平行于β内的所有直线;
④若a?α、b?β,a⊥b,则β⊥α;
⑤若a?α、b?β,β∥α,则a∥b;
⑥若b?β,b⊥α,则β⊥α;
其中正确的是    (只填序号)

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:填空题

如图,ABCD-A1B1C1D1为正方体,下面结论中正确的是   
①AC∥平面CB1D1
②AC1⊥平面CB1D1
③AC1与底面ABCD所成角的正切值是
④AD1与BD为异面直线.

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是平行四边形,∠BAD=30°,AB=2,AD=,E是SC的中点.
(Ⅰ)求证:SA∥平面BDE;
(Ⅱ)求证:AD⊥SB;
(Ⅲ)若SD=2,求二面角E-BD-C的余弦值.

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.
(1)求证:DE⊥BE;
(2)求四棱锥E-ABCD的体积;
(3)设点M在线段AB上,且AM=MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

如图,几何体ABCD中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB何AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3)求二面角B-FC-G的正切值.

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C-PB-D的大小.

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小.

查看答案和解析>>

科目: 来源:2012-2013学年湖北省黄冈市黄州区菱湖高中高一(上)期中数学试卷(解析版) 题型:解答题

如图,在三棱锥P-ABC中,E,F分别为AC,BC的中点.
(1)求证:EF∥平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.

查看答案和解析>>

同步练习册答案