相关习题
 0  121994  122002  122008  122012  122018  122020  122024  122030  122032  122038  122044  122048  122050  122054  122060  122062  122068  122072  122074  122078  122080  122084  122086  122088  122089  122090  122092  122093  122094  122096  122098  122102  122104  122108  122110  122114  122120  122122  122128  122132  122134  122138  122144  122150  122152  122158  122162  122164  122170  122174  122180  122188  176998 

科目: 来源: 题型:


如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环。棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(k>1)。断开轻绳,棒和环自由下落。假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失。棒在整个运动过程中始终保持竖直,空气阻力不计。求:⑴棒第一次与地面碰撞弹起上升过程中,环的加速度。⑵从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s。⑶从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W

查看答案和解析>>

科目: 来源: 题型:


如图所示,在一光滑的水平面上有两块相同的木板B和C。重物A(视为质点)位于B的右端,A、B、C的质量相等。现A和B以同一速度滑向静止的C、B与C发生正碰。碰后B和C粘在一起运动,A在C上滑行,A与C有摩擦力。已知A滑到C的右端而未掉下。试问:从B、C发生正碰到A刚移到C右端期间,C所走过的距离是C板长度的多少倍。

 


查看答案和解析>>

科目: 来源: 题型:


如图所示,将质量均为m厚度不计的两物块A、B用轻质弹簧相连接。第一次只用手托着B物块于H高处,A在弹簧弹力的作用下处于静止,现将弹簧锁定,此时弹簧的弹性势能为Ep,现由静止释放ABB物块着地后速度立即变为0,同时弹簧锁定解除,在随后的过程中B物块恰能离开地面但不继续上升。第二次用手拿着A、B两物块,使得弹簧竖直并处于原长状态,此时物块B离地面的距离也为H,然后由静止同时释放ABB物块着地后速度同样立即变为0。求:

⑴第二次释放A、B后,A上升至弹簧恢复原长时的速度υ1

⑵第二次释放A、B后,B刚要离地时A的速度υ2

 


查看答案和解析>>

科目: 来源: 题型:


有两个完全相同的小滑块AB A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示。

(1)已知滑块质量为m,碰撞时间为Dt,求碰撞过程中AB平均冲力的大小;

(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,物制做一个与B平抛轨迹完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析A在下滑过程中不会脱离轨道),

a.分析A沿轨道下滑到任意一点时的动量PAB平抛经过该点时的动量PB的大小关系;

b.在OD曲线上有一点MOM两点的连线与竖直方向的夹角为45°,求A通过M点时的水平分速度和竖直分速度。

查看答案和解析>>

科目: 来源: 题型:


如图17所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径=0.45m的1/4圆弧面,A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m,滑板的质量=4m.P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B点.P1v0 = 4.0m/s的初速度从A点沿弧面自由滑下,与P发生弹性碰撞后,P1处在粗糙面B点上.当P2滑到C点时,滑板恰好与槽的右端碰撞并牢固粘连,P2继续滑动,到达D点时速度为零.P1与P2视为质点,取g =10m/s2,问:

  (1) P1在BC段向右滑动时,滑板的加速度为多大?

  (2) BC长度为多少?N、P1、P2最终静止后,P1与P2间的距离为多少?

查看答案和解析>>

科目: 来源: 题型:


如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V0=20 m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=15 m/s.若O、O1相距R=1.5 m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=0.5 m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10 m/s2。那么,

(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?

(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。

 (3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前提下,请推导出r的表达式(要求用B、q、m、θ表示,其中θ为小球N的运动速度与水平方向的夹角)。

查看答案和解析>>

科目: 来源: 题型:


如图所示,间距为L、电阻为零的U形金属竖直轨道,固定放置在磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里。竖直轨道上部套有一金属条bcbc的电阻为R,质量为2m,可以在轨道上无摩擦滑动,开始时被卡环卡在竖直轨道上处于静止状态。在bc的正上方高H处,自由落下一质量为m的绝缘物体,物体落到金属条上之前的瞬间,卡环立即释放,两者一起继续下落。设金属条与导轨的摩擦和接触电阻均忽略不计,竖直轨道足够长。求:

(1)金属条开始下落时的加速度;

(2)金属条在加速过程中,速度达到v1时,bc对物体m的支持力;

(3)金属条下落h时,恰好开始做匀速运动,求在这一过程中感应电流产生的热量。

查看答案和解析>>

科目: 来源: 题型:


(1)如图1所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接。质量为m1的小球从高位处由静止开始沿轨道下滑,与静止在轨道BC段上质量m2的小球发生碰撞,碰撞后两球两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。求碰撞后小球m2的速度大小v2

(2)碰撞过程中的能量传递规律在物理学中有着广泛的应用。为了探究这一规律,我们才用多球依次碰撞、碰撞前后速度在同一直线上、且无机械能损失的简化力学模型。如图2所示,在固定光滑水平轨道上,质量分别为m1m2m3……mn-1mn……的若干个球沿直线静止相间排列,给第1个球初能Ek1,从而引起各球的依次碰撞。定义其中第n个球经过依次碰撞后获得的动能Ekn与Ek1之比为第1个球对第n个球的动能传递系数k1n

a) 求k1n

b) 若m1=4m0mk=m0m0为确定的已知量。求m2为何值时,k1n值最大

查看答案和解析>>

科目: 来源: 题型:


(1)如图1,在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等。现突然给左端小球一个向右的速度μ0,求弹簧第一次恢复到自然长度时,每个小球的速度。

(2)如图2,将N个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E0。其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值。已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度。

查看答案和解析>>

科目: 来源: 题型:


如图所示,质量为M的长方形木板静止在光滑水平面上,木板的左侧固定一劲度系数为k的轻质弹簧,木板的右侧用一根伸直的并且不可伸长的轻绳水平地连接在竖直墙上。绳所能承受的最大拉力为T。一质量为m的小滑块以一定的速度在木板上无摩擦地向左运动,而后压缩弹簧。弹簧被压缩后所获得的弹性势能可用公式计算,k为劲度系数,x为弹簧的形变量。

(1)若在小滑块压缩弹簧过程中轻绳始终未断,并且弹簧的形变量最大时,弹簧对木板的弹力大小恰好为T,求此情况下小滑块压缩弹簧前的速度v0

(2)若小滑块压缩弹簧前的速度为已知量,并且大于(1)中所求的速度值v0,求此情况下弹簧压缩量最大时,小滑块的速度;

(3)若小滑块压缩弹簧前的速度大于(1)中所求的速度值v0,求小滑块最后离开木板时,相对地面速度为零的条件。

 

 

 

查看答案和解析>>

同步练习册答案