科目: 来源: 题型:
如图所示,间距为L的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d1,间距为d2.两根质量均为m、有效电阻均为R的导体棒a和b放在导轨上,并与导轨垂直. (设重力加速度为g)
(1)若a进入第2个磁场区域时,b以与a同样的速度进入第1个磁场区域,求b穿过第1个磁场区域过程中增加的动能△Ek.
(2)若a进入第2个磁场区域时,b恰好离开第1个磁场区域;此后a离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且a.b在任意一个磁场区域或无磁场区域的运动时间均相.求b穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q.
(3)对于第(2)问所述的运动情况,求a穿出第k个磁场区域时的速率![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
如图所示1-1(a)是某人设计的一种振动发电装置,它的结构是一个半径为r=0.1 m的有20匝的线圈套在辐向形永久磁铁槽中,磁场的磁感线均沿半径方向均匀分布[其右视图如图(b)].在线圈所在位置磁感应强度B的大小均为0.2 T.线圈的电阻为2Ω,它的引出线接有8Ω的电珠L,外力推动线圈的P端,作往复运动,便有电流通过电珠.当线圈向右的位移随时间变化的规律如图1-2所示时(x取向右为正):
![]()
图1-1 图1-2
⑴试画出感应电流随时间变化的图象[在图(b)中取逆时针电流为正].
⑵求每一次推动线圈运动过程中的作用力.
⑶求该发电机的功率。(摩擦等损耗不计)
查看答案和解析>>
科目: 来源: 题型:
如图甲所示,CDE是固定在绝缘水平面上的光滑金属导轨,CD=DE=L,∠CDE=60º,CD和DE单位长度的电阻均为r0,导轨处于磁感应强度为B、竖直向下的匀强磁场中。MN是绝缘水平面上的一根金属杆,其长度大于L,电阻可忽略不计。现MN在向右的水平拉力作用下以速度v0在CDE上匀速滑行。MN在滑行的过程中始终与CDE接触良好,并且与C、E所确定的直线平行。
(1)求MN滑行到C、E两点时,C、D两点电势差的大小;
(2)推导MN在CDE上滑动过程中,回路中的感应电动势E与时间t的关系表达式;
(3)在运动学中我们学过:通过物体运动速度和时间的关系图线(v-t图)可以求出物体运动的位移x,如图乙中物体在0~t0时间内的位移在数值上等于梯形Ov0Pt0的面积。通过类比我们可以知道:如果画出力与位移的关系图线(F-x图)也可以通过图线求出力对物体所做的功。
请你推导MN在CDE上滑动过程中,MN所受安培力F安与MN的位移x的关系表达式,并用F安与x的关系图线求出MN在CDE上整个滑行的过程中,MN和CDE构成的回路所产生的焦耳热。
![]()
![]()
查看答案和解析>>
科目: 来源: 题型:
随着越来越高的摩天大楼在各地的落成,至今普遍使用的钢索悬挂式电梯已经渐渐地不适用了.这是因为钢索的长度随着楼层的增高而相应增加,这样这些钢索会由于承受不了自身的重量,还没有挂电梯就会被扯断.为此,科学技术人员正在研究用磁动力来解决这个问题.如图所示就是一种磁动力电梯的模拟机,即在竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B1和B2,且B1和B2的方向相反,大小相等,即B1= B2=1T,两磁场始终竖直向上作匀速运动.电梯桥厢固定在如图所示的一个用超导材料制成的金属框abcd内(电梯桥厢在图中未画出),并且与之绝缘.电梯载人时的总质量为5×103kg,所受阻力f=500N,金属框垂直轨道的边长Lcd =2m,两磁场的宽度均与金属框的边长Lac相同,金属框整个回路的电阻R=9.5×10-4Ω,假如设计要求电梯以v1=10m/s的速度向上匀速运动,那么,
(1)磁场向上运动速度v0应该为多大?
(2)在电梯向上作匀速运动时,为维持它的运动,外界必须提供能量,那么这些能量是由谁提供的?此时系统的效率为多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示。导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求
(1)如果导轨和金属框均很光滑,金属框对地是否运动?若不运动,请说明理由;如运动,原因是什么?运动性质如何?
(2)如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度vm是多少?
(3)如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能?
查看答案和解析>>
科目: 来源: 题型:
磁悬浮列车是一种高速低耗的新型交通工具.它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为L平行于y轴,宽为d的NP边平行于x轴,如图1所示.列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B沿O x方向按正弦规律分布,其空间周期为λ,最大值为B0,如图2所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移.设在短暂时间内,MN、PQ边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力.列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为v(v<v0).
(1)简要叙述列车运行中获得驱动力的原理;
(2)为使列车获得最大驱动力,写出MN、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式;
(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图所示,顶角θ=45°,的金属导轨 MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向左滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均匀为r。导体棒与导轨接触点的a和b,导体棒在滑动过程中始终保持与导轨良好接触。t=0时,导体棒位于顶角O处,求:
(1)t时刻流过导体棒的电流强度I和电流方向。
(2)导体棒作匀速直线运动时水平外力F的表达式。
(3)导体棒在0~t时间内产生的焦耳热Q。
(4)若在t0时刻将外力F撤去,导体棒最终在导轨上静止时的坐标x。
解:
查看答案和解析>>
科目: 来源: 题型:
正对的平行板MN、PQ,长L=4m,宽d=4
m,两板间有垂直于板且由PQ板指向MN板的匀强电场.半径R=2m的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外,磁感应强度B=1.0![]()
T,圆心在MN板的延长线上,且圆周刚好过MN板右端点N.一荷质比
,带正电的粒子,以v=0.5![]()
m/s的速度沿两平行板的中轴线方向射入匀强电场发生偏转,恰好由MN板右端点N的边缘进入圆形匀强磁场,离开磁场后最终打到PQ板上.求:(1)粒子落到PQ板上的位置;(2)粒子从进入电场到最终落到PQ板所经历的总时间t.
查看答案和解析>>
科目: 来源: 题型:
如图为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为
的离子都能汇聚到D,试求:
(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);
(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;
(3)线段CM的长度.
![]()
查看答案和解析>>
科目: 来源: 题型:
如图所示,两平地金属板上有加有图乙所示的随时间t变化的电压u,板长L = 0.4m,板间离d = 0.2m,在金属板右侧有一边界为MN的匀强磁场,磁感应强度B = 5×—3r,方向垂直纸面向里。现有带电粒子以速度v0 = 105 m/s沿两板中线OO'方向平行金属板射入电场中,磁场边界MN与中线OO'垂直,已知带电粒子的比荷q/m = 108C/kg,粒子的重力可忽略不计,在每个粒子通地是场区域的极短时间内,电场可视作是恒定不变的。
(1)t = 0时刻射入的带电粒了沿直线射入磁场,求在磁场中运动的入射点和出射点间的距离;(L=0.4m)
(2)证明射出电场的任何一个带电粒子粒,进入磁场的入射点和出射点间的距离为定值;
(设粒子离开电场时速度为γ,偏转角为ß,则粒子进出磁场时L=2mvcosß/Bq=2mv0/Bq,与离开电场时速度v无关,仅与v0有关。 )
(3)试求带电粒子射出电场时的最大速度。
(vm=1.12╳105m/s)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com