相关习题
 0  129607  129615  129621  129625  129631  129633  129637  129643  129645  129651  129657  129661  129663  129667  129673  129675  129681  129685  129687  129691  129693  129697  129699  129701  129702  129703  129705  129706  129707  129709  129711  129715  129717  129721  129723  129727  129733  129735  129741  129745  129747  129751  129757  129763  129765  129771  129775  129777  129783  129787  129793  129801  176998 

科目: 来源: 题型:多选题

19.甲、乙两辆汽车在平直的公路上沿同一方向作直线运动,t=0时刻同时经过公路旁的同一个路标.在描述两车运动的v-t图中(如图),直线a、b分别描述了甲乙两车在0-20s的运动情况.关于两车之间的位置关系,下列说法正确的是(  )
A.在0-10 s内两车逐渐靠近B.在10-20 s内两车逐渐靠近
C.两车再次相遇的时刻为t=10 sD.两车的最大距离为25m

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图所示为A和B两质点的位移-时间图象,则(  )
A.当t=0时,A、B两质点的位移均不为零
B.在运动过程中,A质点运动得比B慢
C.当t=t1时,两质点相遇
D.当t=t1时,两质点位移大小相同

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,在光滑绝缘水平面上,三个带电小球a,b和c分别位于边长为l的正三角形的三个顶点上;a、b带正电,电荷量均为q,c带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若 三个小球均处于静止状态,则匀强电场场强的大小为(  )
A.$\frac{\sqrt{3}kq}{3{l}^{2}}$B.$\frac{\sqrt{3}kq}{{l}^{2}}$C.$\frac{2kq}{{l}^{2}}$D.$\frac{\sqrt{3}kq}{2{l}^{2}}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步.对以下几位物理学家所作科学贡献的表述中,不正确的说法是(  )
A.库仑发现了电流的磁效应
B.爱因斯坦创立了相对论
C.法拉第发现了电磁感应现象
D.牛顿提出了万有引力定律奠定了天体力学的基础

查看答案和解析>>

科目: 来源: 题型:多选题

15.如图所示是用来测定角度θ的电容式传感器.当动片与定片之间的角度θ发生变化时,引起极板正对面积S的变化,使电容C发生变化,知道C的变化,就可以知道θ的变化情况.下列 说法正确的是(  )
A.θ变大,则C变大B.θ变大,则C变小C.θ变小,则C变大D.θ变小,则C变小

查看答案和解析>>

科目: 来源: 题型:填空题

14.某物理小组欲测量小滑块与木板表面的动摩擦因数μ,该小组在实验室找到了两块相同的长木板、铁架台、滑块、秒表、刻度尺等实验器材.
设计的实验装置如图所示:
(1)该实验小组设计的实验步骤如下:
①让两块木板对接,一块木板斜放形成斜面,另一块木板水平放置,并使连接处圆滑
②在斜面上确定一个点A1,用铅垂线确定点A1在水平桌面上的投影点O
③用刻度尺测量A1与斜面底端A2之间的距离s1
④用刻度尺测量A1到水平桌面上O点的距离h
⑤让滑块从A1点由静止开始下滑,经A2后停在水平板上的A3
⑥用刻度尺测量A3到O点的距离S2
(2)在该实验的设计和操作过程中,不需要的实验仪器是秒表,不必要的实验步骤是③.
(3)根据该实验的测量数据,得到木板与滑块的动摩擦因数μ=$\frac{h}{{S}_{2}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.一个小球在液体里运动,会受到一种类似于摩擦的液体阻力的作用,叫做粘滞力.如果液体无限深广,计算粘滞力的关系式为F=3πDηv,其中D为小球直径,v为小球在液体中的运动速度,η称作粘滞系数.
实验创新小组的同学们通过下面实验测量了某液体的粘滞系数.

(1)取一个装满液体的大玻璃缸,放在水平桌面上,将质量为1kg的小钢球沉入液体底部,可以忽略除粘滞力以外的所有摩擦阻力的作用.将一根细线拴在小钢球上,细线另一端跨过定滑轮连接砝码盘.在玻璃缸内靠左端固定两个光电门A、B,光电门的感光点与小钢球的球心在同一条水平线上.
(2)测出小钢球直径为5.00cm,将钢球由玻璃缸底部右侧释放,调整砝码数量以及释放小钢球的初始位置,确保小钢球通过两个光电门的时间相同.若某次测出小钢球通过两个光电门的时间均为0.025s,则可得小钢球此时运动的速度大小为2.0m/s.
(3)记录此时砝码盘以及砝码的总质量m=60g,由计算粘滞力的关系式可得液体的粘滞系数为η=0.62N•s/m2
(4)改变砝码数量,重复第(2)、(3)步骤的实验,测出不同质量的砝码作用下,小钢球匀速运动速度.由表中数据,描点连线,作出粘滞力随速度变化的图象(如图2).
12345678
砝码盘以及砝码的总质量m/g30405060708090100
粘滞力F/N0.300.400.500.600.700.800.901.0
小钢球匀速运动速度v/m•s-11.31.82.22.03.13.54.04.4
根据计算粘滞力的关系式和图象,可得该液体的粘滞系数为η=0.48N•s/m2.(所有结果均保留两位有效数字)

查看答案和解析>>

科目: 来源: 题型:填空题

12.某小组利用如图所示的实验装置来测定滑块与桌面之间的动摩擦因数,其中a是滑块(可视为质点),b是可以固定于桌面的滑槽(滑槽末端与桌面相切)实验操作步骤如下:

A.如图甲所示.将滑槽固定于水平桌面的右端,滑槽的末端N与桌面的右端M对齐,让滑块a从滑槽上最高点由静止释放滑下,落在水平地面上的P点,并测出MO的高度为h、OP的距离为x0
B.如图乙所示.将滑槽沿桌面向左移动一段距离,测出滑槽的末端N与桌面的右端M的距离为L,让滑块a再次从滑槽上最高点由静止释放滑下,落在水平地面上的P′点.测出0P′的距离为x;改变L,重复上述实验.分别记录几组实验数据.已知滑块离开桌面时的速度与滑块在地面上落点的水平位移的关系为v=kx(k为已知常量),不计空气阻力,请回答下列问题:
(1)实验不需要(填“需要”或“不需要”)测量滑块的质量m,
(2)根据实验记录数据做出x2-L关系的图象如图丙所示,则可求滑块a与桌面间的动摩擦因数的表达式是μ=$\frac{{k}^{2}({x}_{1}^{2}-{x}_{2}^{2})}{2gL}$
(3)若更换不同材料的滑块使滑块a与滑块b间摩擦阻力减小,使得滑块a与桌面间的动摩擦因数的测量结果将不变(填“偏大”、“偏小”或“不变”).

查看答案和解析>>

科目: 来源: 题型:解答题

11.某小组测量木块与木板间动摩擦因数,实验装置如图甲所示.

(1)测量木块在水平木板上运动的加速度a.实验中打出的一条纸带如图乙所示.从某个清晰的点O开始,每5个打点取一个计数点,依次标出1、2、3…,量出1、2、3…点到O点的距离分别为s1、s2、s3…,从O点开始计时,1、2、3…点对应时刻分别为t1、t2、t3…,求得$\overline{{v}_{1}}$=$\frac{{s}_{1}}{{t}_{1}}$,$\overline{{v}_{2}}$=$\frac{{s}_{2}}{{t}_{2}}$,$\overline{{v}_{3}}$=$\frac{{s}_{3}}{{t}_{3}}$…. 作出$\overline{v}$-t图象如图丙所示.图线的斜率为k,截距为b.则木块的加速度a=2k;b的物理意义是O点的瞬时速度.
(2)实验测得木块的加速度为a,还测得钩码和木块的质量分别为m和M,已知当地重力加速度为g,则动摩擦因数μ=$\frac{mg-(m+M)a}{Mg}$.
(3)关于上述实验,下列说法中错误的是C.
A.木板必须保持水平
B.调整滑轮高度,使细线与木板平行
C.钩码的质量应远小于木块的质量
D.纸带与打点计时器间的阻力是产生误差的一个因素.

查看答案和解析>>

科目: 来源: 题型:解答题

10.物理小组在一次探究活动中为了测量小物块与斜面之间的动摩擦因数,某同学设计了一个实验:如图甲所示,在已知倾角为θ的斜面上,靠近斜面底端安置一光电门,小物块带有遮光片,遮光片的宽度为d,从斜面上某一位置由静止释放小物块,记录释放时遮光片到光电门的距离x和遮光片通过光电门的时间t.

(1)实验开始之前某同学用游标卡尺测量光电门遮光片的宽度如图乙所示,则遮光片的宽度为1.050cm.
(2)已知重力加速度为g,结合题中测量的物理量写出小物块与斜面间的动摩擦因数的表达式μ=$tanθ\;\;-\frac{{d}^{2}}{2gx{t}^{2}cosθ}$(用题中所给的字母表示).
(3)为了减小实验带来的偶然误差,可采用多次测量的方法.将小物块从斜面上不同位置释放,测出多组小物块到光电门的距离x和遮光片通过光电门的时间t,通过图象法来得到小物块与斜面间的动摩擦因数,为了使图象直观易于观察与测量(即图象为一直线),那么坐标系的中横坐标用x表示,纵坐标用$\frac{1}{{t}^{2}}$表示,测得图象的斜率值为k,则小物块与斜面间的动摩擦因数的表达式为μ=tanθ-$\frac{{d}^{2}}{2kgcosθ}$(用题中所给的字母表示).

查看答案和解析>>

同步练习册答案