相关习题
 0  133906  133914  133920  133924  133930  133932  133936  133942  133944  133950  133956  133960  133962  133966  133972  133974  133980  133984  133986  133990  133992  133996  133998  134000  134001  134002  134004  134005  134006  134008  134010  134014  134016  134020  134022  134026  134032  134034  134040  134044  134046  134050  134056  134062  134064  134070  134074  134076  134082  134086  134092  134100  176998 

科目: 来源: 题型:计算题

15.如图所示,在距离某平面高2h处有一抛出位置P,在距P的水平距离为S=1m处有一光滑竖直挡板AB,A端距该水平面距离为h=0.45m,A端上方整个区域内加有水平向左的匀强电场;B端与半径为R=0.9m的$\frac{1}{4}$的光滑圆轨道BC连接.当传送带静止时,一带电量大小为q=$\frac{1}{9}×{10^{-4}}$C,质量为0.18kg的小滑块,以某一初速度ν0从P点水平抛出,恰好能从AB挡板的右侧沿ABCD路径运动到D点而静止.请完成下列问题

(1)求出所加匀强电场的场强大小?
(2)当滑块刚运动到C点时,求出对圆轨道的压力?
(3)若传送带转动,试讨论滑块达到D时的动能EK与传送带速率的关系?

查看答案和解析>>

科目: 来源: 题型:计算题

14.如图所示,四分之一光滑的竖直绝缘圆轨道AB与水平绝缘轨道BC固定在同一竖直面内.圆轨道半径为R,圆心O点和B点所在竖直线的右侧空间存在着平行于轨道BC向右的匀强电场.现有一质量为m.电荷量为-q的小物块,从水平轨道上的P点处由静止释放,P点到B点的距离为2R,物块经过B点恰好滑到A点.已知物块与水平轨道间的动摩擦因数为μ=0.5,不计空气阻力,重力加速度为g,求:
(1)匀强电场的场强E;
(2)物块第二次经过B点时对轨道的压力FN
(3)物块第四次经过B点向右运动的距离x2与物块第二次经过B向右运动的距离x1之比.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,左侧为两块长为L=10cm,间距d=$\frac{10\sqrt{3}}{3}$cm的平行金属板,加U=$\frac{10}{3}$×104V的电压,上板电势低,用虚线框表示的等边三角形内存在垂直纸面向里的匀强磁场B,三角形的上顶点A与上金属板平齐,DC边与金属板平行,AD的中点P恰好在下金属板的右端点.现从AC边的中点Q以初速度v=$\frac{2\sqrt{3}}{3}$×105m/s垂直AC边射入一个重力不计的带负电微粒,微粒质量m=10-10kg,带电量q=-10-4C,若要使粒子刚好从P点垂直AD边射出磁场进入极板,求:
(1)磁感应强度B;
(2)带电微粒从电场中射出时的速度大小和方向.

查看答案和解析>>

科目: 来源: 题型:计算题

12.月球探测器在月面实现软着陆是非常困难的,探测器接触地面瞬间速度为竖直向下的v1,大于要求的软着陆速度v0,为此,科学家们设计了一种叫电磁阻尼缓冲装置,其原理如图所示.主要部件为缓冲滑块K和绝缘光滑的缓冲轨道MN、PQ.探测器主体中还有超导线圈(图中未画出),能在两轨道间产生垂直于导轨平面的匀强磁场.导轨内的缓冲滑块由高强绝缘材料制成,滑块K上绕有闭合单匝矩形线圈abcd,线圈的总电阻为R,ab边长为L.当探测器接触地面时,滑块K立即停止运动,此后线圈与轨道间的磁场发生作用,使探测器主体做减速运动,从而实现缓冲.已知装置中除缓冲滑块(含线圈)外的质量为m,月球表面的重力加速度为$\frac{g}{6}$,不考虑运动磁场产生的电场.
(1)当缓冲滑块刚停止运动时,判断线圈中感应电流的方向和线圈ab边受到的安培力的方向;
(2)为使探测器主体减速而安全着陆,磁感应强度B应满足什么条件?
(3)当磁感应强度为B0时,探测器主体可以实现软着陆,若从v1减速到v0的过程中,通过线圈截面的电量为q.求该过程中线圈中产生的焦耳热Q.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出),磁感应强度大小为B.两金属棒与导轨保持良好接触.不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.
(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;
(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电荷量;
(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.

查看答案和解析>>

科目: 来源: 题型:计算题

10.如图,A、B为半径R=1m的四分之一光滑绝缘竖直圆弧轨道,在四分之一圆弧区域内存在着E=1×106 V/m、竖直向上的匀强电场,有一质量m=1kg、带电荷量q=+1.4×10-5C的物体(可视为质点),从A点的正上方距离A点H处由静止开始自由下落(不计空气阻力),BC段为长L=2m、与物体间动摩擦因数μ=0.2的粗糙绝缘水平面.(取g=10m/s2) 
(1)若H=1m,物体能沿轨道AB到达最低点B,求它到达B点时对轨道的压力大小;
(2)通过你的计算判断:是否存在某一H值,能使物体沿轨道AB经过最低点B后最终停在距离B点0.8m处.

查看答案和解析>>

科目: 来源: 题型:多选题

9.如图所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有一小孔M和N.今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N在同一竖直线上),空气阻力忽略不计,到达N孔时速度恰好为零.然后沿原路返回.若保持两极板间的电压不变,则正确的是(  )
A.质点从P到N过程中,重力势能的减小量大于电势能的增加量
B.质点在电场中运动时所受电场力的大小为重力的两倍
C.若将A板向上平移一小段距离,质点自P点自由下落后将不能返回
D.若将B板向下平移一小段距离,质点自P点自由下落后将穿过N孔继续下落

查看答案和解析>>

科目: 来源: 题型:多选题

8.如图所示,匀强电场场强大小为E,方向与水平方向夹角为θ=30°,场中有一质量为m,电荷量为q的带电小球,用长为L的细线悬挂于O点.当小球静止时,细线恰好水平.现用一外力将小球沿圆弧缓慢拉到竖直方向最低点,小球电荷量不变,则在此过程中(  )
A.外力所做的功为$\sqrt{3}$mgLB.外力所做的功为$\sqrt{3}$qEL
C.带电小球的重力势能减小mgLD.带电小球的电势能增加$\frac{1+\sqrt{3}}{2}$qEL

查看答案和解析>>

科目: 来源: 题型:多选题

7.如图所示,水平放置的带小孔的金属薄板间有匀强电场,薄板的上极板电势高于下极板,板间距d=1.25m.M恰好在薄板小孔P、N的正上方,距上极板的距离h=1.25m.若从M处由静止释放一个质量m=1×10-3kg电荷量为qa=-4×10-3C的带电小球a,小球a恰好能到达下极板的N孔处而未穿出极板,现若将m=1×10-3kg电荷量为qb=-5×10-3C的带电小球b从M点由静止释放,重力加速度g=10m/s2,下列说法正确的是(  )
A.薄板间的匀强电场的电场强度为3×105N/C
B.薄板间的匀强电场的电场强度为5×105N/C
C.带电小球a从M处下落至下极板的时间为1.0s
D.带电小球b从M处下落的过程中机械能的变化量为-$\frac{1}{48}$J

查看答案和解析>>

科目: 来源: 题型:计算题

6.如图甲所示,两根平行光滑金属导轨相距L=1m,导轨平面与水平面的夹角θ=30°,导轨的下端PQ间接有R=8Ω电阻.相距x=6m的MN和PQ间存在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场.磁感应强度B随时间t的变化情况如图乙所示.将阻值r=2Ω的导体棒ab垂直放在导轨上,使导体棒从t=0时由静止释放,t=1s时导体棒恰好运动到MN,开始匀速下滑.g取10m/s2.求:
(1)0~1s内回路中的感应电动势;
(2)导体棒ab的质量;
(3)0~2s时间内导体棒所产生的热量.

查看答案和解析>>

同步练习册答案