相关习题
 0  134290  134298  134304  134308  134314  134316  134320  134326  134328  134334  134340  134344  134346  134350  134356  134358  134364  134368  134370  134374  134376  134380  134382  134384  134385  134386  134388  134389  134390  134392  134394  134398  134400  134404  134406  134410  134416  134418  134424  134428  134430  134434  134440  134446  134448  134454  134458  134460  134466  134470  134476  134484  176998 

科目: 来源: 题型:计算题

7.如图所示,两根平行放置的金属导轨COD、C′O′D′,导轨OC,O′C′部分粗糙,处在同一水平面内,其空间气方向水平向左、磁感应强度B1=$\frac{25}{8}$T的匀强磁场,导轨OD,O′D′部分光滑且足够长,与水平面成30°,其空间有方向垂直于导轨向上、磁感应强度B2=1T的匀强磁场,OO′的连线垂直于OC、O′C′,金属杆M垂直导轨放置在OC段处,金属杆N垂直导轨放置在OD段上且距离O点足够远处,己知导轨间相距d=1m,金属杆与水平导轨间的动摩擦因数μ=0.4,两杆质量均为m=1kg,电阻均为R=0.5Ω;
(1)若金属杆N由静止释放,求其沿导轨OD下滑的最大速度vm
(2)若使金属杆N在平行导轨的外力F的作用下,由静止开始沿导轨向下做加速度a=2m/s2的匀加速运动,求t=2s时的外力F;
(3)在第(2)问中,金属杆N运动的同时也给金属杆M向左的初速度v1=4m/s,求当金属杆M停止速度时,金属杆N沿OD下滑的距离.

查看答案和解析>>

科目: 来源: 题型:计算题

6.如图甲所示.宽L=0.5m、倾角θ=37°的两个相互平行的长金属导轨.上端c、d间接有R=0.5Ω的电阻.在导轨间存在垂直于导轨平面向上的磁场.磁感应强度B按图乙所示规律变化.一质量m=0.1kg的金属杆ab垂直轨道放置.距离上端电阻x=1.2m.t=0时ab由静止释放.最终以v=0.6m/s速度沿粗糙轨道向下匀速运动.除R外其余电阻均不计,滑动摩擦力等于最大静摩擦力.sin37°=0.6.cos37°=.8.取g=10m/s2
(1)求ab匀速运动时R中的电流大小及方向;
(2)t>0.5s的某个时刻ab下滑速度为0.1m/s.求此时加速度的大小;
(3)通过推理说明ab何时开始运动.

查看答案和解析>>

科目: 来源: 题型:选择题

5.LC振荡回路中,无阻尼振荡电流i随时间t变化的图象如图所.则(  )
A.t1时刻电流量大,电场能也最大
B.t1到t2时间内,电容器放电,两极板电量逐渐减小
C.t2到t3时间内,电路中的电场能转化为磁场能
D.t4时刻电流为零,线圈中的磁场能最大

查看答案和解析>>

科目: 来源: 题型:多选题

4.如图所示,粗细均匀的电阻丝围成的正方形线框abcd位于竖直平面内,其下方有一垂直于纸面向外,上下边界均与线框ab边平行的匀强磁场区域MNQP.已知磁场区域的宽度为d,磁感应强度为B,线框的总电阻为R,边长为L(L<d),质量为m.让线框从离磁场区域边界MN的高度为h处由静止释放,其cd边刚进入磁场和刚穿出磁场时刻的速度相等,已知重力加速度为g.则(  )
A.线框穿过磁场区域的过程中产生的焦耳热为mgd
B.线框cd边刚进入磁场时,cd两点间的电势差为$\frac{1}{4}$BL$\sqrt{2gh}$
C.线框从cd边刚进入磁场到cd边刚穿出磁场的过程中,先减速后加速
D.线框从 cd边刚进入磁场到ab边刚进入磁场的过程中,通过线框横截面的电荷量为$\frac{B{L}^{2}}{R}$

查看答案和解析>>

科目: 来源: 题型:计算题

3.如图为学校体操室一个8m高的落地支架,横梁下面固定一支长6m、质量5kg的竹竿.质量为40kg的同学在竿下从静止开始先匀加速再匀减速上爬,爬到竿顶时速度正也为零.假设减速时的加速度大小是加速时的2倍,上爬总时间为3s,问这两个阶段竹竿对横梁的拉力分别是多少?(g取10m/s2

查看答案和解析>>

科目: 来源: 题型:计算题

2.如图,在电场强度大小为E的匀强电场中有一半径为r的固定的光滑绝缘圆轨道,轨道平面与电场线平行.一电荷为q(q>0)、质量为m的小球恰能沿轨道内侧运动.小球受到的重力与受到的电场力相比可不计.求质点对轨道的最大压力.

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图所示,一内壁截面为椭圆形的容器,其质量为M=3kg,置于光滑水平面上,O为椭圆的中心,M、N为椭圆的两个焦点,且MN=2$\sqrt{3}$cm.椭圆面上的P点在左焦点M的正下方且相距2cm,将一质量为m=1kg、可看作质点的物块放于P点,并用大小恒为F=16$\sqrt{3}$N的水平拉力向右拉容器,物块保持在P点与容器相对静止,取g=10m/s2,则物块受到的容器壁的弹力FN和摩擦力Ff大小分别是(  )(提示:∠MPN的平分线垂直于椭圆在P点的切线.)
A.FN=6$\sqrt{3}$N、Ff=2NB.FN=7$\sqrt{3}$N、Ff=1NC.FN=8$\sqrt{3}$N、Ff=0ND.FN=5$\sqrt{3}$N、Ff=5N

查看答案和解析>>

科目: 来源: 题型:计算题

20.如图所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧-段被弯成半径为$\frac{L}{2}$的四分之一圆弧,圆弧导轨的左、右两段处于高度相差$\frac{L}{2}$的水平面上.以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上.在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.
(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;
(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;
(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,
a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;
b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.

查看答案和解析>>

科目: 来源: 题型:计算题

19.如图所示,两条平行的金属导轨相距L=1m,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN和PQ的质量均为m=0.2kg,电阻分别为RMN=1Ω和RPQ=2Ω.MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F1的作用下由静止开始以a=1m/s2的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态.t=3s时,PQ棒消耗的电功率为8W,不计导轨的电阻,水平导轨足够长,MN始终在水平导轨上运动.求:
(1)磁感应强度B的大小;
(2)0~3s时间内通过MN棒的电荷量;
(3)若改变F1的作用规律,使MN棒的运动速度v与位移x满足关系:v=0.4x,PQ棒仍然静止在倾斜轨道上.求MN棒从静止开始到x=5m的过程中,系统产生的焦耳热.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图所示,两根相距为L的足够长的两平行光滑导轨固定在同一水平面上,并处于竖直方向的匀强磁场中,磁场的磁感应强度为B,ab和cd两根金属细杆静止在导轨上面,与导轨一起构成矩形闭合回路.两根金属杆的质量关系为mab=2mcd=2m、电阻均为r,导轨的电阻忽略不计,从t=0时刻开始,两根细杆分别受到平行于导轨方向、大小均为F的拉力作用,分别向相反方向滑动,经过时间T时,两杆同时达到最大速度,以后都作匀速直线运动.
(1)若在t1(t1<T)时刻ab杆速度的大小等于v1,求此时时刻ab杆加速度的大小为多少?
(2)在0~T时间内,经过ab杆横截面的电量是多少?

查看答案和解析>>

同步练习册答案