相关习题
 0  140055  140063  140069  140073  140079  140081  140085  140091  140093  140099  140105  140109  140111  140115  140121  140123  140129  140133  140135  140139  140141  140145  140147  140149  140150  140151  140153  140154  140155  140157  140159  140163  140165  140169  140171  140175  140181  140183  140189  140193  140195  140199  140205  140211  140213  140219  140223  140225  140231  140235  140241  140249  176998 

科目: 来源: 题型:多选题

5.如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,∠A=60°,AO=a.在O点放置一个粒子源,可以向各个方向发射某种带负电粒子,粒子的比荷为$\frac{q}{m}$,发射速度大小都为v0,且满足v0=$\frac{qBa}{m}$,发射方向由图中的角度θ表示.对于粒子进入磁场后的运动(不计重力作用),下列说法正确的是(  )
A.粒子有可能打到A点
B.以θ=60°飞入的粒子运动时间最短
C.θ<30°飞入的粒子运动的时间都相等
D.在AC边界上只有一半区域有粒子射出

查看答案和解析>>

科目: 来源: 题型:填空题

4.一处于基态的氢原子,撞击静止的也处于基态的另一氢原子,碰撞后,两氢原子跃迁到同一激发态,且动能均为10.2eV.已知氢原子基态能量为-13.6eV.则
①氢原子第一激发态的能量值是-3.4eV;
②碰撞前运动氢原子的最小动能是40.8eV.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图甲所示,电极K连续发出初速不计、比荷$\frac{q}{m}$=2×107C/kg的正粒子,经U=1.6×104V的电场加速后,由小孔S沿平行板M、N中线射入板间.M、N板长l1=0.24m,相距d=0.16m.以垂直纸面向里为磁场正方向,板间磁感应强度B随时间t变化的规律如图乙所示.两板右侧有一记录圆筒,筒左侧与平行板右端相距l2=0.02m,筒绕其竖直中心轴匀速转动的周期T=0.4s,筒的周长s=0.4m,筒的高度足够大,能全部接收从M、N板右侧射出的粒子.以t=0时进入板间的粒子打到筒记录纸上的点为直角坐标系xOy的原点,并取y轴竖直向上,如图丙.在粒子通过磁场区域的极短时间内,磁场视作恒定,不计粒子重力.

(1)求进入平行板间粒子的速度大小;
(2)求使粒子能击中圆筒的磁感应强度B的取值范围;
(3)求粒子打到记录纸上的最高点的y坐标值和x坐标值;
(4)在图丙中画出粒子打到记录纸上的点形成的图线(不必写出运算过程).

查看答案和解析>>

科目: 来源: 题型:多选题

2.如图所示,理想变压器的原、副线圈匝数比n1:n2=20:1,原线圈接u1=UmsinωtV的正弦交变电压,副线圈中标有“10V  100W”的灯泡正常发光,则(  )
A.Um=200VB.Um=200$\sqrt{2}V$
C.当ωt=$\frac{π}{2}$时,副线圈中的电流为OD.当ωt=π时,副线圈中的电流为O

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图所示,倾斜挡板NM上的一个小孔K,NM与水平挡板NP成60°角,K与N间的距离$\overline{KN}$=a.现有质量为m,电荷量为q的正电粒子组成的粒子束,垂直于倾斜挡板NM,以速度v0不断射入,不计粒子所受的重力.
(1)若在NM和NP两档板所夹的区域内存在一个垂直于纸面向外的匀强磁场,NM和NP为磁场边界.粒子恰能垂直于水平挡板NP射出,求匀强磁场的磁感应强度的大小.
(2)若在NM和NP两档板所夹的区域内,某一部分区域存在与(1)中大小相等方向相反的匀强磁场.从小孔K飞入的这些粒子经过磁场偏转后也能垂直打到水平挡板NP上(之前与挡板没有碰撞),求粒子在该磁场中运动的时间.
(3)若在(2)问中,磁感应强度大小未知,从小孔K飞入的这些粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图所示,在平面直角坐标系xoy中,在O≤y≤b且x>0的区域I内分布着沿y轴正方向的匀强电场,电场强度为E;在0≤y≤b且x<0的区域II内分布着沿y轴负方向的匀强电场,电场强度也为E;在y>b的区域Ⅲ和y<0的区域IV内存在垂直于纸面向里、大小可调节的匀强磁场.质量为m,电荷量为+q的粒子由P(b,0)点静止释放,经电场加速和磁场偏转后又回到P点.已知粒子在磁场区域Ⅲ和Ⅳ中始终做轨道半径为b的匀速圆周运动.粒子重力不计且不考虑磁场变化所引起的电场效应.
(1)求粒子绕行第1圈又回到P点时获得的动能
(2)求粒子绕行第1圈又回到P点所用时间t
(3)为使粒子在磁场中运动时始终保持在半径为b的圆轨道上,磁场必须不断递增,求区域Ⅲ磁感应强度B和区域Ⅳ磁感应强度之间应满足的比例关系式.

查看答案和解析>>

科目: 来源: 题型:解答题

19.某电视台“快乐向前冲”节目中的场地设施如图所示,AB为水平直轨道,上面安装有电动悬挂器,可以载人运动,水面上漂浮着一个半径为R,角速度为ω,铺有海绵垫的转盘,转盘的轴心离平台的水平距离为L,平台边缘与转盘平面的高度差为H.选手抓住悬挂器,可以在电动机带动下,从A点下方的平台边缘处沿水平方向做初速度为零,加速度为a的匀加速直线运动.选手必须作好判断,在合适的位置释放,才能顺利落在转盘上.设人的质量为m(不计身高大小),人与转盘间的最大静摩擦力为μmg,重力加速度为g.
(1)假设选手落到转盘上瞬间相对转盘速度立即变为零,为保证他落在任何位置都不会被甩下转盘,转盘的角速度ω应限制在什么范围?
(2)若已知H=5m,L=8ml,a=2m/s2,g=10m/s2,且选手从某处C点释放能恰好落到转盘的圆心上,则他是从平台出发后多长时间释放悬挂器的?
(3)若电动悬挂器开动后,针对不同选手的动力与该选手重力关系皆为F=0.6mg,悬挂器在轨道上运动时存在恒定的摩擦阻力,选手在运动到上面(2)中所述位置C点时,因恐惧没有释放悬挂器,但立即关闭了它的电动机,则按照(2)中数据计算悬挂器载着选手还能继续向右滑行多远的距离?

查看答案和解析>>

科目: 来源: 题型:多选题

18.在某介质中一列横波沿x轴负向传播,波源位于x=1.4m处,波速为0.4m/s,振幅为2cm.如图所示为t=0时刻该列波的图象,此刻位于x=1.0m处的Q质点恰好开始振动.下列说法中正确的是(  )
A.此列波的波长为0.4m
B.t=1.0s时,M点(x=0.7m)的位移为+2cm
C.t=1.25s时Q点的坐标变为x=0.5m,y=+2cm
D.Q点的振动方程为y=2sin2πt(cm)

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,竖直放置的两块很大的平行金属板a、b,相距为d=0.8m,ab间电场强度E一定.有一带正电的微粒,微粒质量为m=1.0×10-4kg,从a板下边缘以某一初速度v0竖直向上射入电场,当它飞到b板时,速度大小仍为v0,而方向变为水平方向,且刚好从离下缘高度也为d的狭缝穿过b板而进入bc区域,bc区域的宽度也为d,所加电场场强大小也是E,方向竖直向上,该区还有垂直纸面向里的匀强磁场.磁感应强度大小等于$\frac{E}{{v}_{0}}$,(重力加速度g=10m/s2)问:
(1)带电粒子在ab之间运动时间t1多大?运动时的加速度a多大?
(2)粒子在bc区域作何种运动?运动时间t2多长?
(3)粒子在穿过两个区域过程中,电势能改变了多少?
(4)若在粒子刚进入bc区间时,突然撒掉电场E,则带电粒子在该区域作何运动?运动时间t3多长?

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图甲所示,在某空间区域内存在随时闻周期性变化的匀强电场和匀强磁场,变化规律分别如图乙、丙所示,电场方向沿x轴正方向,取垂直纸面向里为磁感应强度的正方向.在t=0时刻由原点O发射初速受大小为v0.方向沿x轴正方向的带正电粒子(不计重力).其中已知v0、t0、B0,且E=$\frac{{B}_{0}{v}_{0}}{2π}$,粒子的比荷$\frac{q}{m}$=$\frac{π}{{B}_{0}{t}_{0}}$,y轴上有一点A,坐标为(0,-$\frac{24{v}_{0}{t}_{0}}{π}$).求:

(1)$\frac{{t}_{0}}{2}$时带电粒子的位置坐标.
(2)粒子运动过程中偏离y轴的最大距离.
(3)粒子经多长时间经过A点.

查看答案和解析>>

同步练习册答案