在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。
(1) 求点B的坐标;
(2) 点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D。使得ED=PE。以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运 时,C点、D点也随之运动)
j 当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;
k 若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一
点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止
运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF
到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q
点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分
别有一条直角边恰好落在同一条直线上,求此刻t的值。
解:(1) ∵拋物线y= -x2+x+m2-3m+2经过原点,∴m2-3m+2=0,解得m1=1,m2=2,
由题意知m¹1,∴m=2,∴拋物线的解析式为y= -x2+x,∵点B(2,n)在拋物线
y= -x2+x上,∴n=4,∴B点的坐标为(2,4)。
(2) j 设直线OB的解析式为y=k1x,求得直线OB的解析式为
y=2x,∵A点是拋物线与x轴的一个交点,可求得A点的
坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为
(a,2a),根据题意作等腰直角三角形PCD,如图1。可求
得点C的坐标为(3a,2a),由C点在拋物线上,得
2a= -´(3a)2+´3a,即a2-a=0,解得a1=,a2=0
(舍去),∴OP=。
k 依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,由点A(10,0),
点B(2,4),求得直线AB的解析式为y= -x+5,当P点运动到t秒时,两个等腰
直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:
第一种情况:CD与NQ在同一条直线上。如图2所示。可证△DPQ为等腰直角三
角形。此时OP、DP、AQ的长可依次表示为t、4t、2t个单位。∴PQ=DP=4t,
∴t+4t+2t=10,∴t=。
第二种情况:PC与MN在同一条直线上。如图3所示。可证△PQM为等腰直角三
角形。此时OP、AQ的长可依次表示为t、2t个单位。∴OQ=10-2t,∵F点在
直线AB上,∴FQ=t,∴MQ=2t,∴PQ=MQ=CQ=2t,∴t+2t+2t=10,∴t=2。
第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示。此时OP、
AQ的长可依次表示为t、2t个单位。∴t+2t=10,∴t=。综上,符合题意的
t值分别为,2, 。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com