【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20-40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.
附:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 10.828 |
【答案】(1)列联表见解析;没有95%的把握认为市民是否购买该款手机与年龄有关. (2)分布列见解析;
【解析】
(1)由茎叶图能完成列联表,由列联表求出,从而得到没有95%的把握认为市民是否购买该款手机与年龄有关.
(2)购买意愿弱的市民共有20人,抽样比例为,所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,则的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望.
(1)由茎叶图可得:
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | 20 | 8 | 28 |
大于40岁 | 10 | 12 | 22 |
合计 | 30 | 20 | 50 |
由列联表可得:,
所以没有95%的把握认为市民是否购买该款手机与年龄有关.
(2)购买意愿弱的市民共有20人,抽样比例为,所以年龄在20~40岁的抽取了2人,年龄大于40岁的抽取了3人,则的可能取值为0,1,2,
,,,
所以分布列为:
0 | 1 | 2 | |
|
数学期望为.
科目:高中数学 来源: 题型:
【题目】如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )
A.在点F的运动过程中,存在EF//BC1
B.在点M的运动过程中,不存在B1M⊥AE
C.四面体EMAC的体积为定值
D.四面体FA1C1B的体积不为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,则下列结论不正确的是( )
A.函数在区间上单调递增
B.函数在区间上单调递减
C.函数的极大值是,极小值是
D.存在某一个实数的值,使得函数是偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】离心率为的椭圆经过点,是坐标原点.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程,并求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线交于、两点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com